Skip to content
Related Articles

Related Articles

Improve Article

Naive algorithm for Pattern Searching

  • Difficulty Level : Easy
  • Last Updated : 14 Apr, 2021

Given a text txt[0..n-1] and a pattern pat[0..m-1], write a function search(char pat[], char txt[]) that prints all occurrences of pat[] in txt[]. You may assume that n > m
Examples: 

Input:  txt[] = "THIS IS A TEST TEXT"
        pat[] = "TEST"
Output: Pattern found at index 10

Input:  txt[] =  "AABAACAADAABAABA"
        pat[] =  "AABA"
Output: Pattern found at index 0
        Pattern found at index 9
        Pattern found at index 12

 

Pattern searching is an important problem in computer science. When we do search for a string in notepad/word file or browser or database, pattern searching algorithms are used to show the search results. 
 

Naive Pattern Searching: 
Slide the pattern over text one by one and check for a match. If a match is found, then slides by 1 again to check for subsequent matches. 
 

C




// C program for Naive Pattern Searching algorithm
#include <stdio.h>
#include <string.h>
 
void search(char* pat, char* txt)
{
    int M = strlen(pat);
    int N = strlen(txt);
 
    /* A loop to slide pat[] one by one */
    for (int i = 0; i <= N - M; i++) {
        int j;
 
        /* For current index i, check for pattern match */
        for (j = 0; j < M; j++)
            if (txt[i + j] != pat[j])
                break;
 
        if (j == M) // if pat[0...M-1] = txt[i, i+1, ...i+M-1]
            printf("Pattern found at index %d \n", i);
    }
}
 
/* Driver program to test above function */
int main()
{
    char txt[] = "AABAACAADAABAAABAA";
    char pat[] = "AABA";
    search(pat, txt);
    return 0;
}

C++




// C++ program for Naive Pattern
// Searching algorithm
#include <bits/stdc++.h>
using namespace std;
 
void search(char* pat, char* txt)
{
    int M = strlen(pat);
    int N = strlen(txt);
 
    /* A loop to slide pat[] one by one */
    for (int i = 0; i <= N - M; i++) {
        int j;
 
        /* For current index i, check for pattern match */
        for (j = 0; j < M; j++)
            if (txt[i + j] != pat[j])
                break;
 
        if (j == M) // if pat[0...M-1] = txt[i, i+1, ...i+M-1]
            cout << "Pattern found at index "
                 << i << endl;
    }
}
 
// Driver Code
int main()
{
    char txt[] = "AABAACAADAABAAABAA";
    char pat[] = "AABA";
    search(pat, txt);
    return 0;
}
 
// This code is contributed
// by Akanksha Rai

Java




// Java program for Naive Pattern Searching
public class NaiveSearch {
 
    public static void search(String txt, String pat)
    {
        int M = pat.length();
        int N = txt.length();
 
        /* A loop to slide pat one by one */
        for (int i = 0; i <= N - M; i++) {
 
            int j;
 
            /* For current index i, check for pattern
              match */
            for (j = 0; j < M; j++)
                if (txt.charAt(i + j) != pat.charAt(j))
                    break;
 
            if (j == M) // if pat[0...M-1] = txt[i, i+1, ...i+M-1]
                System.out.println("Pattern found at index " + i);
        }
    }
 
    public static void main(String[] args)
    {
        String txt = "AABAACAADAABAAABAA";
        String pat = "AABA";
        search(txt, pat);
    }
}
// This code is contributed by Harikishore

Python3




# Python3 program for Naive Pattern
# Searching algorithm
def search(pat, txt):
    M = len(pat)
    N = len(txt)
 
    # A loop to slide pat[] one by one */
    for i in range(N - M + 1):
        j = 0
         
        # For current index i, check
        # for pattern match */
        while(j < M):
            if (txt[i + j] != pat[j]):
                break
            j += 1
 
        if (j == M):
            print("Pattern found at index ", i)
 
# Driver Code
if __name__ == '__main__':
    txt = "AABAACAADAABAAABAA"
    pat = "AABA"
    search(pat, txt)
 
# This code is contributed
# by PrinciRaj1992

C#




// C# program for Naive Pattern Searching
using System;
 
class GFG {
 
    public static void search(String txt, String pat)
    {
        int M = pat.Length;
        int N = txt.Length;
 
        /* A loop to slide pat one by one */
        for (int i = 0; i <= N - M; i++) {
            int j;
 
            /* For current index i, check for pattern
            match */
            for (j = 0; j < M; j++)
                if (txt[i + j] != pat[j])
                    break;
 
            // if pat[0...M-1] = txt[i, i+1, ...i+M-1]
            if (j == M)
                Console.WriteLine("Pattern found at index " + i);
        }
    }
 
    // Driver code
    public static void Main()
    {
        String txt = "AABAACAADAABAAABAA";
        String pat = "AABA";
        search(txt, pat);
    }
}
// This code is Contributed by Sam007

PHP




<?php
// PHP program for Naive Pattern
// Searching algorithm
 
function search($pat, $txt)
{
    $M = strlen($pat);
    $N = strlen($txt);
 
    // A loop to slide pat[]
    // one by one
    for ($i = 0; $i <= $N - $M; $i++)
    {
 
        // For current index i,
        // check for pattern match
        for ($j = 0; $j < $M; $j++)
            if ($txt[$i + $j] != $pat[$j])
                break;
 
        // if pat[0...M-1] =
        // txt[i, i+1, ...i+M-1]
        if ($j == $M)
            echo "Pattern found at index ", $i."\n";
    }
}
 
    // Driver Code
    $txt = "AABAACAADAABAAABAA";
    $pat = "AABA";
    search($pat, $txt);
     
// This code is contributed by Sam007
?>

Javascript




<script>
    // Javascript program for Naive Pattern Searching
     
    function search(txt, pat)
    {
        let M = pat.length;
        let N = txt.length;
   
        /* A loop to slide pat one by one */
        for (let i = 0; i <= N - M; i++) {
            let j;
   
            /* For current index i, check for pattern
            match */
            for (j = 0; j < M; j++)
                if (txt[i + j] != pat[j])
                    break;
   
            // if pat[0...M-1] = txt[i, i+1, ...i+M-1]
            if (j == M)
                document.write("Pattern found at index " + i + "</br>");
        }
    }
     
    let txt = "AABAACAADAABAAABAA";
    let pat = "AABA";
    search(txt, pat);
                                
</script>

Output: 



Pattern found at index 0 
Pattern found at index 9 
Pattern found at index 13 

What is the best case? 
The best case occurs when the first character of the pattern is not present in text at all.

C




txt[] = "AABCCAADDEE";
pat[] = "FAA";

The number of comparisons in best case is O(n). 
What is the worst case ? 
The worst case of Naive Pattern Searching occurs in following scenarios. 
1) When all characters of the text and pattern are same. 
 

C




txt[] = "AAAAAAAAAAAAAAAAAA";
pat[] = "AAAAA";

2) Worst case also occurs when only the last character is different. 
 

C




txt[] = "AAAAAAAAAAAAAAAAAB";
pat[] = "AAAAB";

The number of comparisons in the worst case is O(m*(n-m+1)). Although strings which have repeated characters are not likely to appear in English text, they may well occur in other applications (for example, in binary texts). The KMP matching algorithm improves the worst case to O(n). We will be covering KMP in the next post. Also, we will be writing more posts to cover all pattern searching algorithms and data structures. 
 

?list=PLqM7alHXFySEQDk2MDfbwEdjd2svVJH9p
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :