Open In App
Related Articles

ML | Kaggle Breast Cancer Wisconsin Diagnosis using KNN and Cross Validation

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report
Dataset : It is given by Kaggle from UCI Machine Learning Repository, in one of its challenges. https://www.kaggle.com/uciml/breast-cancer-wisconsin-data. It is a dataset of Breast Cancer patients with Malignant and Benign tumor. K-nearest neighbour algorithm is used to predict whether is patient is having cancer (Malignant tumour) or not (Benign tumour). Implementation of KNN algorithm for classification. Code : Importing Libraries
# performing linear algebra
import numpy as np 
  
# data processing
import pandas as pd
  
# visualisation
import matplotlib.pyplot as plt

                    
Code : Loading dataset
df = pd.read_csv("..\\breast-cancer-wisconsin-data\\data.csv")
  
print (data.head)

                    
Output : Code: Data Info
df.info()

                    
Output :
RangeIndex: 569 entries, 0 to 568
Data columns (total 33 columns):
id                         569 non-null int64
diagnosis                  569 non-null object
radius_mean                569 non-null float64
texture_mean               569 non-null float64
perimeter_mean             569 non-null float64
area_mean                  569 non-null float64
smoothness_mean            569 non-null float64
compactness_mean           569 non-null float64
concavity_mean             569 non-null float64
concave points_mean        569 non-null float64
symmetry_mean              569 non-null float64
fractal_dimension_mean     569 non-null float64
radius_se                  569 non-null float64
texture_se                 569 non-null float64
perimeter_se               569 non-null float64
area_se                    569 non-null float64
smoothness_se              569 non-null float64
compactness_se             569 non-null float64
concavity_se               569 non-null float64
concave points_se          569 non-null float64
symmetry_se                569 non-null float64
fractal_dimension_se       569 non-null float64
radius_worst               569 non-null float64
texture_worst              569 non-null float64
perimeter_worst            569 non-null float64
area_worst                 569 non-null float64
smoothness_worst           569 non-null float64
compactness_worst          569 non-null float64
concavity_worst            569 non-null float64
concave points_worst       569 non-null float64
symmetry_worst             569 non-null float64
fractal_dimension_worst    569 non-null float64
Unnamed: 32                0 non-null float64
dtypes: float64(31), int64(1), object(1)
memory usage: 146.8+ KB
Code: We are dropping columns – ‘id’ and ‘Unnamed: 32’ as they have no role in prediction
df.drop(['Unnamed: 32', 'id'], axis = 1)
print(df.shape)

                    
Output:
(569, 31)
Code: Converting the diagnosis value of M and B to a numerical value where M (Malignant) = 1 and B (Benign) = 0
def diagnosis_value(diagnosis):
    if diagnosis == 'M':
        return 1
    else:
        return 0
  
df['diagnosis'] = df['diagnosis'].apply(diagnosis_value)

                    
Code :
sns.lmplot(x = 'radius_mean', y = 'texture_mean', hue = 'diagnosis', data = df)

                    
Output:

Code :
sns.lmplot(x ='smoothness_mean', y = 'compactness_mean'
           data = df, hue = 'diagnosis')

                    
Output: Code : Input and Output data
X = np.array(df.iloc[:, 1:])
y = np.array(df['diagnosis'])

                    
Code : Splitting data to training and testing
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size = 0.33, random_state = 42)

                    
Code : Using Sklearn
knn = KNeighborsClassifier(n_neighbors = 13)
knn.fit(X_train, y_train)

                    
Output:
KNeighborsClassifier(algorithm='auto', leaf_size=30, 
             metric='minkowski', metric_params=None, 
             n_jobs=None, n_neighbors=13, p=2, 
             weights='uniform')
Code : Prediction Score
knn.score(X_test, y_test)

                    
Output:
0.9627659574468085
Code : Performing Cross Validation
neighbors = []
cv_scores = []
  
from sklearn.model_selection import cross_val_score
# perform 10 fold cross validation
for k in range(1, 51, 2):
    neighbors.append(k)
    knn = KNeighborsClassifier(n_neighbors = k)
    scores = cross_val_score(
        knn, X_train, y_train, cv = 10, scoring = 'accuracy')
    cv_scores.append(scores.mean())

                    
Code : Misclassification error versus k
MSE = [1-x for x in cv_scores]
  
# determining the best k
optimal_k = neighbors[MSE.index(min(MSE))]
print('The optimal number of neighbors is % d ' % optimal_k)
  
# plot misclassification error versus k
plt.figure(figsize = (10, 6))
plt.plot(neighbors, MSE)
plt.xlabel('Number of neighbors')
plt.ylabel('Misclassification Error')
plt.show()

                    
Output:
The optimal number of neighbors is 13 


Last Updated : 21 Aug, 2020
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads