Open In App
Related Articles

Minimum value to be assigned to the elements so that sum becomes greater than initial sum

Improve Article
Improve
Save Article
Save
Like Article
Like

Given an array arr[] of N elements, the task is to update all the elements of the given array to some value X such that the sum of all the updated array elements is strictly greater than the sum of all the elements of the initial array and X is the minimum possible.

Examples: 

Input: arr[] = {4, 2, 1, 10, 6} 
Output:
Sum of original array = 4 + 2 + 1 + 10 + 6 = 23 
Sum of the modified array = 5 + 5 + 5 + 5 + 5 = 25

Input: arr[] = {9876, 8654, 5470, 3567, 7954} 
Output: 7105 

Approach: 

  • Find the sum of the original array elements and store it in a variable sumArr
  • Calculate X = sumArr / n where n is the number of elements in the array.
  • Now, in order to exceed the sum of the original array, every element of the new array has to be at least X + 1.

Below is the implementation of the above approach:

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the minimum
// required value
int findMinValue(int arr[], int n)
{
 
    // Find the sum of the
    // array elements
    long sum = 0;
    for (int i = 0; i < n; i++)
        sum += arr[i];
 
    // Return the required value
    return ((sum / n) + 1);
}
 
// Driver code
int main()
{
    int arr[] = { 4, 2, 1, 10, 6 };
    int n = sizeof(arr) / sizeof(int);
 
    cout << findMinValue(arr, n);
 
    return 0;
}

Java




// Java implementation of the approach
import java.io.*;
 
public class GFG {
 
    // Function to return the minimum
    // required value
    static int findMinValue(int arr[], int n)
    {
 
        // Find the sum of the
        // array elements
        long sum = 0;
        for (int i = 0; i < n; i++)
            sum += arr[i];
 
        // Return the required value
        return ((int)(sum / n) + 1);
    }
 
    // Driver code
    public static void main(String args[])
    {
        int arr[] = { 4, 2, 1, 10, 6 };
        int n = arr.length;
 
        System.out.print(findMinValue(arr, n));
    }
}

Python3




# Python3 implementation of the approach
 
# Function to return the minimum
# required value
def findMinValue(arr, n):
     
    # Find the sum of the
    # array elements
    sum = 0
    for i in range(n):
        sum += arr[i]
         
    # Return the required value
    return (sum // n) + 1
     
# Driver code
arr = [4, 2, 1, 10, 6]
n = len(arr)
print(findMinValue(arr, n))

C#




// C# implementation of the above approach
using System;
 
class GFG
{
     
    // Function to return the minimum
    // required value
    static int findMinValue(int []arr, int n)
    {
 
        // Find the sum of the
        // array elements
        long sum = 0;
        for (int i = 0; i < n; i++)
            sum += arr[i];
 
        // Return the required value
        return ((int)(sum / n) + 1);
    }
 
    // Driver code
    static public void Main ()
    {
        int []arr = { 4, 2, 1, 10, 6 };
        int n = arr.Length;
 
        Console.WriteLine(findMinValue(arr, n));
    }
}       
         
// This code is contributed by AnkitRai01

Javascript




<script>
// Javascript implementation of the approach
 
// Function to return the minimum
// required value
function findMinValue(arr, n)
{
 
    // Find the sum of the
    // array elements
    let sum = 0;
    for (let i = 0; i < n; i++)
        sum += arr[i];
 
    // Return the required value
    return (parseInt(sum / n) + 1);
}
 
// Driver code
    let arr = [ 4, 2, 1, 10, 6 ];
    let n = arr.length;
 
    document.write(findMinValue(arr, n));
 
</script>

Output: 

5

 

Time Complexity: O(N). 
Auxiliary Space: O(1).  


Last Updated : 08 Dec, 2022
Like Article
Save Article
Similar Reads
Related Tutorials