Minimum steps to reduce N to 0 by given operations

Give an integer N, the task is to find the minimum number of moves to reduce N to 0 by one of the following operations:

  • Reduce N by 1.
  • Reduce N to (N/2), if N is divisible by 2.
  • Reduce N to (N/3), if N is divisible by 3.

Examples:

Input: N = 10
Output: 4
Explanation: 
Here N = 10
Step 1: Reducing N by 1 i.e., 10 – 1 = 9.  
Step 2: Since 9 is divisible by 3, reduce it to N/3 = 9/3 = 3
Step 3: Since again 3 is divisible by 3 again repeating step 2, i.e., 3/3 = 1.
Step 4: 1 can be reduced by the step 1, i.e., 1-1 = 0  
Hence, 4 steps are needed to reduce N to 0.

Input: N = 6
Output: 3
Explanation: 
Here N = 6
Step 1: Since 6 is divisible by 2, then 6/2 =3
Step 2: since 3 is divisible by 3, then 3/3 = 1. 
Step 3: Reduce N to N-1 by 1, 1-1 = 0.
Hence, 3 steps are needed to reduce N to 0.

Naive Approach: The idea is to use recursion for all the possible moves. Below are the steps:



  1. Observe that base case for the problem, if N < 2 then for all the cases the answer will be N itself.
  2. At every value of N, choose between 2 possible cases:
    • Reduce n till n % 2 == 0 and then update n /= 2 with count = 1 + n%2 + f(n/2)
    • Reduce n till n % 3 == 0 and then update n /= 3 with count = 1 + n%3 + f(n/3)
  3. Both the computation results in the recurrence relation as:

 count = 1 + min(n%2 + f(n/2), n%3 + f(n/3))
where, f(n) is the minimum  of moves to reduce N to 0.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum
// number to steps to reduce N to 0
int minDays(int n)
{
     
    // Base case
    if (n < 1)
        return n;
         
    // Recursive call to count the
    // minimum steps needed
    int cnt = 1 + min(n % 2 + minDays(n / 2),
                      n % 3 + minDays(n / 3));
 
    // Return the answer
    return cnt;
}
 
// Driver Code
int main()
{
     
    // Given number N
    int N = 6;
     
    // Function call
    cout << minDays(N);
     
    return 0;
}
 
// This code is contributed by 29AjayKumar

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
class GFG{
   
    // Function to find the minimum
    // number to steps to reduce N to 0
    static int minDays(int n)
    {
 
        // Base case
        if (n < 1)
            return n;
 
        // Recursive Call to count the
        // minimum steps needed
        int cnt = 1 + Math.min(n % 2 + minDays(n / 2),
                               n % 3 + minDays(n / 3));
 
        // Return the answer
        return cnt;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        // Given Number N
        int N = 6;
 
        // Function Call
        System.out.print(minDays(N));
    }
}
 
// This code is contributed by PrinciRaj1992

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
 
# Function to find the minimum
# number to steps to reduce N to 0
def minDays(n):
 
    # Base case
    if n < 1:
        return n
       
    # Recursive Call to count the
    # minimum steps needed
    cnt = 1 + min(n % 2 + minDays(n // 2),
                  n % 3 + minDays(n // 3))
 
    # Return the answer
    return cnt
 
# Driver Code
 
# Given Number N
N = 6
 
# Function Call
print(str(minDays(N)))

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach
using System;
class GFG{
 
// Function to find the minimum
// number to steps to reduce N to 0
static int minDays(int n)
{   
    // Base case
    if (n < 1)
        return n;
 
    // Recursive call to count the
    // minimum steps needed
    int cnt = 1 + Math.Min(n % 2 + minDays(n / 2),
                           n % 3 + minDays(n / 3));
 
    // Return the answer
    return cnt;
}
 
// Driver Code
public static void Main(String[] args)
{   
    // Given number N
    int N = 6;
 
    // Function call
    Console.Write(minDays(N));
}
}
 
// This code is contributed by Rajput-Ji

chevron_right


Output: 

4





Time Complexity: O(2N)
Auxiliary Space: O(1)

Efficient Approach: The idea is to use Dynamic Programming. The above recursive approach results in TLE because of the number of repeated subproblems. To optimize the above method using a dictionary to keep track of values whose recursive call is already performed to reduce the further computation such that value can be accessed faster.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for
// the above approach
#include<bits/stdc++.h>
using namespace std;
 
// Function to find the minimum
// number to steps to reduce N to 0
int count(int n)
{
  // Dictionary for storing
  // the precomputed sum
  map<int, int> dp;
 
  // Bases Cases
  dp[0] = 0;
  dp[1] = 1;
 
  // Check if n is not in dp then
  // only call the function so as
  // to reduce no of recursive calls
  if ((dp.find(n) == dp.end()))
    dp[n] = 1 + min(n % 2 +
                    count(n / 2), n % 3 +
                    count(n / 3));
 
  // Return the answer
  return dp[n];
}
 
// Driver Code
int main()
{   
  // Given number N
  int N = 6;
 
  // Function call
  cout << count(N);
}
 
// This code is contributed by gauravrajput1

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
import java.util.HashMap;
 
class GFG{
     
// Function to find the minimum
// number to steps to reduce N to 0
static int count(int n)
{
     
    // Dictionary for storing
    // the precomputed sum
    HashMap<Integer,
            Integer> dp = new HashMap<Integer,
                                      Integer>();
 
    // Bases Cases
    dp.put(0, 0);
    dp.put(1, 1);
 
    // Check if n is not in dp then
    // only call the function so as
    // to reduce no of recursive calls
    if (!dp.containsKey(n))
        dp.put(n, 1 + Math.min(n % 2 +
                 count(n / 2), n % 3 +
                 count(n / 3)));
 
    // Return the answer
    return dp.get(n);
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given number N
    int N = 6;
 
    // Function call
    System.out.println(String.valueOf((count(N))));
}
}
 
// This code is contributed by Amit Katiyar

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
 
# Function to find the minimum
# number to steps to reduce N to 0
def count(n):
   
    # Dictionary for storing
    # the precomputed sum
    dp = dict()
 
    # Bases Cases
    dp[0] = 0
    dp[1] = 1
 
    # Check if n is not in dp then
    # only call the function so as
    # to reduce no of recursive calls
    if n not in dp:
        dp[n] = 1 + min(n % 2 + count(n//2), n % 3 + count(n//3))
 
    # Return the answer
    return dp[n]
 
 
# Driver Code
 
# Given Number N
N = 6
 
# Function Call
print(str(count(N)))

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach
using System;
using System.Collections.Generic;
public class GFG{
     
// Function to find the minimum
// number to steps to reduce N to 0
static int count(int n)
{   
    // Dictionary for storing
    // the precomputed sum
    Dictionary<int,
               int> dp = new Dictionary<int,
                                        int>();
 
    // Bases Cases
    dp.Add(0, 0);
    dp.Add(1, 1);
 
    // Check if n is not in dp then
    // only call the function so as
    // to reduce no of recursive calls
    if (!dp.ContainsKey(n))
        dp.Add(n, 1 + Math.Min(n % 2 + count(n / 2),
                               n % 3 + count(n / 3)));
 
    // Return the answer
    return dp[n];
}
 
// Driver Code
public static void Main(String[] args)
{   
    // Given number N
    int N = 6;
 
    // Function call
    Console.WriteLine(String.Join("",
                                  (count(N))));
}
}
 
// This code is contributed by Rajput-Ji

chevron_right


Output: 

3





Time Complexity: O(log N)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.