Minimum number of given operations required to reduce the array to 0 element

Given an array arr[] of N integers. The task is to find the minimum number of given operations required to reduce the array to 0 element. In a single operation, any element can be chosen from the array and all of its multiples get removed including itself.

Examples:

Input: arr[] = {2, 4, 6, 3, 4, 6, 8}
Output: 2
Operation 1: Choose 2 and delete all the multiples, arr[] = {3}
Operation 3: Choose 3 and the array gets reduced to 0 element.



Input: arr[] = {2, 4, 2, 4, 4, 4}
Output: 1

Naive approach: Find minimum from the array at each step and traverse the entire array to find multiples of this elements and delete them.

Efficient approach:

  • Create a count array which stores the count of each number in the array.
  • Since we know that for a number x the elements which satisfies the condition (A % x == 0) are actually the multiples of x and hence we need to find the multiples for every number and set their frequencies to 0 including the chosen element itself.
  • Now for every number we traverse it’s multiples once and subtract the value of the count of that number from all of it’s multiples.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the minimum
// operations required
int minOperations(int* arr, int n)
{
    int maxi, result = 0;
  
    // Count the frequency of each element
    vector<int> freq(1000001, 0);
    for (int i = 0; i < n; i++) {
        int x = arr[i];
        freq[x]++;
    }
  
    // Maximum element from the array
    maxi = *(max_element(arr, arr + n));
    for (int i = 1; i <= maxi; i++) {
        if (freq[i] != 0) {
  
            // Find all the multiples of i
            for (int j = i * 2; j <= maxi; j = j + i) {
  
                // Delete the multiples
                freq[j] = 0;
            }
  
            // Increment the operations
            result++;
        }
    }
    return result;
}
  
// Driver code
int main()
{
    int arr[] = { 2, 4, 2, 4, 4, 4 };
    int n = sizeof(arr) / sizeof(arr[0]);
  
    cout << minOperations(arr, n);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach 
import java.util.Arrays;
  
class GFG
{
  
    // Function to return the minimum 
    // operations required 
    static int minOperations(int[] arr, int n) 
    {
        int maxi, result = 0;
  
        // Count the frequency of each element 
        int[] freq = new int[1000001];
        for (int i = 0; i < n; i++)
        {
            int x = arr[i];
            freq[x]++;
        }
  
        // Maximum element from the array 
        maxi = Arrays.stream(arr).max().getAsInt();
        for (int i = 1; i <= maxi; i++) 
        {
            if (freq[i] != 0)
            {
  
                // Find all the multiples of i 
                for (int j = i * 2; j <= maxi; j = j + i) 
                {
  
                    // Delete the multiples 
                    freq[j] = 0;
                }
  
                // Increment the operations 
                result++;
            }
        }
        return result;
    }
  
    // Driver code 
    public static void main(String[] args)
    {
        int arr[] = {2, 4, 2, 4, 4, 4};
        int n = arr.length;
  
        System.out.println(minOperations(arr, n));
    }
}
  
// This code is contributed by 29AjayKumar

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach 
  
# Function to return the minimum 
# operations required 
def minOperations(arr, n): 
  
    result = 0
      
    # Count the frequency of each element 
    freq = [0] * 1000001
      
    for i in range(0, n): 
        freq[arr[i]] += 1
  
    # Maximum element from the array 
    maxi = max(arr) 
    for i in range(1, maxi+1): 
        if freq[i] != 0
  
            # Find all the multiples of i 
            for j in range(i * 2, maxi+1, i): 
  
                # Delete the multiples 
                freq[j] = 0
  
            # Increment the operations 
            result += 1
          
    return result 
  
# Driver code 
if __name__ == "__main__"
  
    arr = [2, 4, 2, 4, 4, 4
    n = len(arr) 
  
    print(minOperations(arr, n)) 
  
# This code is contributed by Rituraj Jain

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of above approach
using System;
using System.Linq; 
  
class GFG
{
  
    // Function to return the minimum 
    // operations required 
    static int minOperations(int[] arr, int n) 
    {
        int maxi, result = 0;
  
        // Count the frequency of each element 
        int[] freq = new int[1000001];
        for (int i = 0; i < n; i++)
        {
            int x = arr[i];
            freq[x]++;
        }
  
        // Maximum element from the array 
        maxi = arr.Max();
        for (int i = 1; i <= maxi; i++) 
        {
            if (freq[i] != 0)
            {
  
                // Find all the multiples of i 
                for (int j = i * 2; j <= maxi; j = j + i) 
                {
  
                    // Delete the multiples 
                    freq[j] = 0;
                }
  
                // Increment the operations 
                result++;
            }
        }
        return result;
    }
  
    // Driver code 
    public static void Main(String[] args)
    {
        int []arr = {2, 4, 2, 4, 4, 4};
        int n = arr.Length;
  
        Console.WriteLine(minOperations(arr, n));
    }
}
  
// This code is contributed by Rajput-Ji

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of the approach 
  
// Function to return the minimum 
// operations required 
function minOperations($arr, $n
    $result = 0; 
      
    $freq = array();
      
    // Count the frequency of each element 
    for($i = 0; $i < $n; $i++)
    {
        $freq[$arr[$i]] = 0;
    }
      
    for ($i = 0; $i < $n; $i++)
    
        $x = $arr[$i]; 
        $freq[$x]++; 
    
  
    // Maximum element from the array 
    $maxi = max($arr); 
    for ($i = 1; $i <= $maxi; $i++)
    
        if ($freq[$i] != 0)
        
  
            // Find all the multiples of i 
            for ($j = $i * 2;
                 $j <= $maxi; $j = $j + $i
            
  
                // Delete the multiples 
                $freq[$j] = 0; 
            
  
            // Increment the operations 
            $result++; 
        
    
    return $result
  
// Driver code 
$arr = array( 2, 4, 2, 4, 4, 4 ); 
$n = count($arr); 
  
echo minOperations($arr, $n); 
  
// This code is contributed by AnkitRai01
?>

chevron_right


Output:

1


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.