Related Articles

# Minimum labelled node to be removed from undirected Graph such that there is no cycle

• Difficulty Level : Hard
• Last Updated : 02 Jul, 2021

Given an undirected graph of N nodes labelled from 1 to N, the task is to find the minimum labelled node that should be removed from the graph such that the resulting graph has no cycle.

Note: If the initial graph has no cycle, i.e. no node needs to be removed, print -1.

Examples:

Input: N = 5, edges[][] = {{5, 1}, {5, 2}, {1, 2}, {2, 3}, {2, 4}}
Output:
Explanation:
If node 1 is removed, the resultant graph has no cycle. Similarly, the cycle can be avoided by removing node 2 also.
Since we have to find the minimum labelled node, the answer is 1.

Input: N = 5, edges[][] = {{4, 5}, {4, 1}, {4, 2}, {4, 3}, {5, 1}, {5, 2}}
Output: 4

Naive Approach: The naive approach for this problem would be to remove each vertex individually and check whether the resulting graph has a cycle or not. The time complexity for this approach is quadratic.

Efficient Approach: The idea is to apply depth-first search on the given graph and observing the dfs tree formed.

• A Back Edge is referred to as the edge that is not part of the constructed DFS tree and is an edge between some node v and one of the ancestors of v.
• Clearly all those edges of the graph which are not a part of the DFS tree are back edges.
• If there are no back edges in the graph, then the graph has no cycle. So, the answer will be -1 in this case.

If there are back edges in the graph, then we need to find the minimum edge. In order to do this, we need to check if the cycle is removed on removing a specific edge from the graph. Therefore, let v be a vertex which we are currently checking. Therefore, the following conditions must be followed by vertex v such that on removing, it would lead to no cycle:

• v must lie on the tree path connecting the endpoints of each back edge in the graph.
Proof: Suppose there exists some back edge x-y, such that v doesn’t lie on the tree path. If we remove v, we would still be able to traverse from x to y, and back to x via the back edge, indicating that the cycle is not removed.
• The subtree of v must have at-most one back edge to any ancestor of v.
Proof: Let the subtree S has to back edges w-x and y-z such that w and y are in S and x and z are ancestors of v. If we remove v, clearly a cycle still exists consisting of the path between w to y, the path from x to z and the two back edges w-x and y-z, i.e. cycle is not removed.

Therefore, the idea is to keep a track of back edges, and an indicator for the number of back edges in the subtree of a node to any of its ancestors. To keep a track of back edges we will use a modified DFS graph colouring algorithm
In order to check if the subtree v has at-most one back edge to any ancestor of v or not, we implement dfs such that it returns the depth of two highest edges from the subtree of v. We maintain an array where every index ‘i’ in the array stores if the condition 2 from the above is satisfied by the node ‘i’ or not. Similarly, two arrays are implemented, one for the child and another for the parent to see if the node v lies on the tree path connecting the endpoints.

Below is the implementation of the above approach:

## C++

 `// C++ implementation to find the``// minimum labelled node to be``// removed such that there is no``// cycle in the undirected graph` `#include ` `using` `namespace` `std;` `const` `int` `MAX = 100005;` `int` `totBackEdges;``int` `countAdj[MAX], small[MAX];` `// Variables to store if a node V has``// at-most one back edge and store the``// depth of the node for the edge``int` `isPossible[MAX], depth[MAX];` `vector<``int``> adj[MAX];``int` `vis[MAX];` `// Function to swap the pairs of the graph``void` `change(pair<``int``, ``int``>& p, ``int` `x)``{``    ``// If the second value is``    ``// greater than x``    ``if` `(p.second > x)``        ``p.second = x;` `    ``// Put the pair in the ascending``    ``// order internally``    ``if` `(p.first > p.second)``        ``swap(p.first, p.second);``}` `// Function to perform the DFS``pair<``int``, ``int``> dfs(``int` `v, ``int` `p = -1, ``int` `de = 0)``{``    ``// Initialise with the large value``    ``pair<``int``, ``int``> answer(100000000, 100000000);` `    ``// Storing the depth of this vertex``    ``depth[v] = de;` `    ``// Mark the vertex as visited``    ``vis[v] = 1;``    ``isPossible[v] = 1;` `    ``// Iterating through the graph``    ``for` `(``int` `u : adj[v]) {` `        ``// If the node is a child node``        ``if` `(u ^ p) {` `            ``// If the child node is unvisited``            ``if` `(!vis[u]) {` `                ``// Move to the child and increase``                ``// the depth``                ``auto` `x = dfs(u, v, de + 1);` `                ``// increase according to algorithm``                ``small[v] += small[u];` `                ``change(answer, x.second);``                ``change(answer, x.first);` `                ``// If the node is not having``                ``// exactly K backedges``                ``if` `(x.second < de)``                    ``isPossible[v] = 0;``            ``}` `            ``// If the child is already visited``            ``// and in current dfs``            ``// (because colour is 1)``            ``// then this is a back edge``            ``else` `if` `(vis[u] == 1) {``                ``totBackEdges++;` `                ``// Increase the countAdj values``                ``countAdj[v]++;``                ``countAdj[u]++;``                ``small[p]++;``                ``small[u]--;``                ``change(answer, depth[u]);``            ``}``        ``}``    ``}` `    ``// Colour this vertex 2 as``    ``// we are exiting out of``    ``// dfs for this node``    ``vis[v] = 2;``    ``return` `answer;``}` `// Function to find the minimum labelled``// node to be removed such that``// there is no cycle in the undirected graph``int` `minNodetoRemove(``    ``int` `n,``    ``vector > edges)``{` `    ``// Construct the graph``    ``for` `(``int` `i = 0; i < edges.size(); i++) {``        ``adj[edges[i].first]``            ``.push_back(edges[i].second);``        ``adj[edges[i].second]``            ``.push_back(edges[i].first);``    ``}` `    ``// Mark visited as false for each node``    ``memset``(vis, 0, ``sizeof``(vis));` `    ``totBackEdges = 0;` `    ``// Apply dfs on all unmarked nodes``    ``for` `(``int` `v = 1; v <= n; v++) {``        ``if` `(!vis[v])``            ``dfs(v);``    ``}` `    ``// If no backedges in the initial graph``    ``// this means that there is no cycle``    ``// So, return -1``    ``if` `(totBackEdges == 0)``        ``return` `-1;` `    ``int` `node = -1;` `    ``// Iterate through the vertices and``    ``// return the first node that``    ``// satisfies the condition``    ``for` `(``int` `v = 1; v <= n; v++) {` `        ``// Check whether the count sum of``        ``// small[v] and count is the same as``        ``// the total back edges and``        ``// if the vertex v can be removed``        ``if` `(countAdj[v] + small[v]``                ``== totBackEdges``            ``&& isPossible[v]) {``            ``node = v;``        ``}``        ``if` `(node != -1)``            ``break``;``    ``}` `    ``return` `node;``}` `// Driver code``int` `main()``{``    ``int` `N = 5;``    ``vector > edges;``    ``edges.push_back(make_pair(5, 1));``    ``edges.push_back(make_pair(5, 2));``    ``edges.push_back(make_pair(1, 2));``    ``edges.push_back(make_pair(2, 3));``    ``edges.push_back(make_pair(2, 4));` `    ``cout << minNodetoRemove(N, edges);``}`

## Java

 `// Java implementation to find the``// minimum labelled node to be``// removed such that there is no``// cycle in the undirected graph``import` `java.util.ArrayList;``import` `java.util.Arrays;` `class` `Pair``{``    ``int` `first, second;` `    ``public` `Pair(``int` `first, ``int` `second)``    ``{``        ``this``.first = first;``        ``this``.second = second;``    ``}``}` `class` `GFG{` `static` `final` `int` `MAX = ``100005``;` `static` `int` `totBackEdges;``static` `int``[] countAdj = ``new` `int``[MAX];``static` `int``[] small = ``new` `int``[MAX];` `// Variables to store if a node V has``// at-most one back edge and store the``// depth of the node for the edge``static` `int``[] isPossible = ``new` `int``[MAX];``static` `int``[] depth = ``new` `int``[MAX];` `@SuppressWarnings``(``"unchecked"``)``static` `ArrayList[] adj = ``new` `ArrayList[MAX];` `static` `int``[] vis = ``new` `int``[MAX];` `// Function to swap the pairs of the graph``static` `void` `change(Pair p, ``int` `x)``{``    ` `    ``// If the second value is``    ``// greater than x``    ``if` `(p.second > x)``        ``p.second = x;` `    ``// Put the Pair in the ascending``    ``// order internally``    ``if` `(p.first > p.second)``    ``{``        ``int` `tmp = p.first;``        ``p.first = p.second;``        ``p.second = tmp;``    ``}``}` `// Function to perform the DFS``static` `Pair dfs(``int` `v, ``int` `p, ``int` `de)``{``    ` `    ``// Initialise with the large value``    ``Pair answer = ``new` `Pair(``100000000``, ``100000000``);` `    ``// Storing the depth of this vertex``    ``depth[v] = de;` `    ``// Mark the vertex as visited``    ``vis[v] = ``1``;``    ``isPossible[v] = ``1``;` `    ``// Iterating through the graph``    ``for``(``int` `u : adj[v])``    ``{``        ` `        ``// If the node is a child node``        ``if` `((u ^ p) != ``0``)``        ``{``            ` `            ``// If the child node is unvisited``            ``if` `(vis[u] == ``0``)``            ``{``                ` `                ``// Move to the child and increase``                ``// the depth``                ``Pair x = dfs(u, v, de + ``1``);` `                ``// increase according to algorithm``                ``small[v] += small[u];` `                ``change(answer, x.second);``                ``change(answer, x.first);` `                ``// If the node is not having``                ``// exactly K backedges``                ``if` `(x.second < de)``                    ``isPossible[v] = ``0``;``            ``}` `            ``// If the child is already visited``            ``// and in current dfs``            ``// (because colour is 1)``            ``// then this is a back edge``            ``else` `if` `(vis[u] == ``1``)``            ``{``                ``totBackEdges++;` `                ``// Increase the countAdj values``                ``countAdj[v]++;``                ``countAdj[u]++;``                ``small[p]++;``                ``small[u]--;``                ``change(answer, depth[u]);``            ``}``        ``}``    ``}` `    ``// Colour this vertex 2 as``    ``// we are exiting out of``    ``// dfs for this node``    ``vis[v] = ``2``;``    ``return` `answer;``}` `// Function to find the minimum labelled``// node to be removed such that``// there is no cycle in the undirected graph``static` `int` `minNodetoRemove(``int` `n, ArrayList edges)``{``    ` `    ``// Construct the graph``    ``for``(``int` `i = ``0``; i < edges.size(); i++)``    ``{``        ``adj[edges.get(i).first].add(``            ``edges.get(i).second);``        ``adj[edges.get(i).second].add(``            ``edges.get(i).first);``    ``}` `    ``// Mark visited as false for each node``    ``Arrays.fill(vis, ``0``);` `    ``totBackEdges = ``0``;` `    ``// Apply dfs on all unmarked nodes``    ``for``(``int` `v = ``1``; v <= n; v++)``    ``{``        ``if` `(vis[v] == ``0``)``            ``dfs(v, -``1``, ``0``);``    ``}` `    ``// If no backedges in the initial graph``    ``// this means that there is no cycle``    ``// So, return -1``    ``if` `(totBackEdges == ``0``)``        ``return` `-``1``;` `    ``int` `node = -``1``;` `    ``// Iterate through the vertices and``    ``// return the first node that``    ``// satisfies the condition``    ``for``(``int` `v = ``1``; v <= n; v++)``    ``{``        ` `        ``// Check whether the count sum of``        ``// small[v] and count is the same as``        ``// the total back edges and``        ``// if the vertex v can be removed``        ``if` `((countAdj[v] + small[v] == totBackEdges) &&``           ``isPossible[v] != ``0``)``        ``{``            ``node = v;``        ``}``        ` `        ``if` `(node != -``1``)``            ``break``;``    ``}``    ``return` `node;``}` `// Driver code``public` `static` `void` `main(String[] args)``{``    ``int` `N = ``5``;``    ` `    ``ArrayList edges = ``new` `ArrayList<>();``    ``for``(``int` `i = ``0``; i < MAX; i++)``    ``{``        ``adj[i] = ``new` `ArrayList<>();``    ``}``    ` `    ``edges.add(``new` `Pair(``5``, ``1``));``    ``edges.add(``new` `Pair(``5``, ``2``));``    ``edges.add(``new` `Pair(``1``, ``2``));``    ``edges.add(``new` `Pair(``2``, ``3``));``    ``edges.add(``new` `Pair(``2``, ``4``));` `    ``System.out.println(minNodetoRemove(N, edges));``}``}` `// This code is contributed by sanjeev2552`

## Python3

 `# Python3 implementation to find the``# minimum labelled node to be``# removed such that there is no``# cycle in the undirected graph ``MAX` `=` `100005``; ``totBackEdges ``=` `0``countAdj ``=` `[``0` `for` `i ``in` `range``(``MAX``)]``small ``=` `[``0` `for` `i ``in` `range``(``MAX``)]``  ` `# Variables to store if a node V has``# at-most one back edge and store the``# depth of the node for the edge``isPossible ``=` `[``0` `for` `i ``in` `range``(``MAX``)]``depth ``=` `[``0` `for` `i ``in` `range``(``MAX``)]``adj ``=` `[[] ``for` `i ``in` `range``(``MAX``)]``vis ``=` `[``0` `for` `i ``in` `range``(``MAX``)]` `# Function to swap the pairs of the graph``def` `change(p, x):` `    ``# If the second value is``    ``# greater than x``    ``if` `(p[``1``] > x):``        ``p[``1``] ``=` `x;``  ` `    ``# Put the pair in the ascending``    ``# order internally``    ``if` `(p[``0``] > p[``1``]):``    ` `       ``tmp ``=` `p[``0``];``       ``p[``0``] ``=` `p[``1``];``       ``p[``1``] ``=` `tmp;``     ` `# Function to perform the DFS``def` `dfs(v, p ``=` `-``1``, de ``=` `0``):``    ``global` `vis, totBackEdges``    ` `    ``# Initialise with the large value``    ``answer ``=` `[``100000000``, ``100000000``]``  ` `    ``# Storing the depth of this vertex``    ``depth[v] ``=` `de;``  ` `    ``# Mark the vertex as visited``    ``vis[v] ``=` `1``;``    ``isPossible[v] ``=` `1``;``  ` `    ``# Iterating through the graph``    ``for` `u ``in` `adj[v]:``  ` `        ``# If the node is a child node``        ``if` `((u ^ p) !``=` `0``):``  ` `            ``# If the child node is unvisited``            ``if` `(vis[u] ``=``=` `0``):``  ` `                ``# Move to the child and increase``                ``# the depth``                ``x ``=` `dfs(u, v, de ``+` `1``);``  ` `                ``# increase according to algorithm``                ``small[v] ``+``=` `small[u];``  ` `                ``change(answer, x[``1``]);``                ``change(answer, x[``0``]);``  ` `                ``# If the node is not having``                ``# exactly K backedges``                ``if` `(x[``1``] < de):``                    ``isPossible[v] ``=` `0``;``  ` `            ``# If the child is already visited``            ``# and in current dfs``            ``# (because colour is 1)``            ``# then this is a back edge``            ``elif` `(vis[u] ``=``=` `1``):``                ``totBackEdges ``+``=` `1``  ` `                ``# Increase the countAdj values``                ``countAdj[v] ``+``=` `1``                ``countAdj[u] ``+``=` `1``                ``small[p] ``+``=` `1``                ``small[u] ``-``=` `1``                ``change(answer, depth[u]);``              ` `    ``# Colour this vertex 2 as``    ``# we are exiting out of``    ``# dfs for this node``    ``vis[v] ``=` `2``;``    ``return` `answer;``  ` `# Function to find the minimum labelled``# node to be removed such that``# there is no cycle in the undirected graph``def` `minNodetoRemove( n, edges):``  ` `    ``# Construct the graph``    ``for` `i ``in` `range``(``len``(edges)):``    ` `        ``adj[edges[i][``0``]].append(edges[i][``1``]);``        ``adj[edges[i][``1``]].append(edges[i][``0``]);``        ` `    ``global` `vis, totBackEdges``    ` `    ``# Mark visited as false for each node``    ``vis ``=` `[``0` `for` `i ``in` `range``(``len``(vis))] ``    ``totBackEdges ``=` `0``;``  ` `    ``# Apply dfs on all unmarked nodes``    ``for` `v ``in` `range``(``1``, n ``+` `1``):  ``        ``if` `(vis[v] ``=``=` `0``):``            ``dfs(v);``     ` `    ``# If no backedges in the initial graph``    ``# this means that there is no cycle``    ``# So, return -1``    ``if` `(totBackEdges ``=``=` `0``):``        ``return` `-``1``; ``    ``node ``=` `-``1``;``  ` `    ``# Iterate through the vertices and``    ``# return the first node that``    ``# satisfies the condition``    ``for` `v ``in` `range``(``1``, n ``+` `1``):``  ` `        ``# Check whether the count sum of``        ``# small[v] and count is the same as``        ``# the total back edges and``        ``# if the vertex v can be removed``        ``if` `((countAdj[v] ``+` `small[v] ``=``=` `totBackEdges) ``and` `isPossible[v] !``=` `0``):``            ``node ``=` `v;      ``        ``if` `(node !``=` `-``1``):``            ``break``; ``    ``return` `node;``  ` `# Driver code``if` `__name__``=``=``'__main__'``:   ``    ``N ``=` `5``;``    ``edges ``=` `[]``    ``edges.append([``5``, ``1``]);``    ``edges.append([``5``, ``2``]);``    ``edges.append([``1``, ``2``]);``    ``edges.append([``2``, ``3``]);``    ``edges.append([``2``, ``4``]); ``    ``print``(minNodetoRemove(N, edges));` `    ``# This code is contributed by Pratham76`

## C#

 `// C# implementation to find the``// minimum labelled node to be``// removed such that there is no``// cycle in the undirected graph`` ` `using` `System;``using` `System.Collections;``using` `System.Collections.Generic;` `class` `GFG``{`` ` `static` `int` `MAX = 100005;`` ` `static` `int` `totBackEdges;``static` `int` `[]countAdj = ``new` `int``[MAX];``static` `int` `[]small = ``new` `int``[MAX];`` ` `// Variables to store if a node V has``// at-most one back edge and store the``// depth of the node for the edge``static` `int` `[]isPossible = ``new` `int``[MAX];``static` `int` `[]depth = ``new` `int``[MAX];` `static` `ArrayList adj = ``new` `ArrayList();` `static` `int` `[]vis = ``new` `int``[MAX];` `class` `pair``{``    ``public` `int` `first, second;``    ``public` `pair(``int` `first, ``int` `second)``    ``{``        ``this``.first = first;``        ``this``.second = second;``    ``}``}`` ` `// Function to swap the pairs of the graph``static` `void` `change(``ref` `pair p, ``int` `x)``{``    ``// If the second value is``    ``// greater than x``    ``if` `(p.second > x)``        ``p.second = x;`` ` `    ``// Put the pair in the ascending``    ``// order internally``    ``if` `(p.first > p.second)``    ``{ ``       ``int` `tmp = p.first;``       ``p.first = p.second;``       ``p.second = tmp;``    ``}``}`` ` `// Function to perform the DFS``static` `pair dfs(``int` `v, ``int` `p = -1, ``int` `de = 0)``{``    ``// Initialise with the large value``    ``pair answer = ``new` `pair(100000000, 100000000);`` ` `    ``// Storing the depth of this vertex``    ``depth[v] = de;`` ` `    ``// Mark the vertex as visited``    ``vis[v] = 1;``    ``isPossible[v] = 1;`` ` `    ``// Iterating through the graph``    ``foreach` `(``int` `u ``in` `(ArrayList)adj[v]) {`` ` `        ``// If the node is a child node``        ``if` `((u ^ p) != 0) {`` ` `            ``// If the child node is unvisited``            ``if` `(vis[u] == 0) {`` ` `                ``// Move to the child and increase``                ``// the depth``                ``pair x = dfs(u, v, de + 1);`` ` `                ``// increase according to algorithm``                ``small[v] += small[u];`` ` `                ``change(``ref` `answer, x.second);``                ``change(``ref` `answer, x.first);`` ` `                ``// If the node is not having``                ``// exactly K backedges``                ``if` `(x.second < de)``                    ``isPossible[v] = 0;``            ``}`` ` `            ``// If the child is already visited``            ``// and in current dfs``            ``// (because colour is 1)``            ``// then this is a back edge``            ``else` `if` `(vis[u] == 1) {``                ``totBackEdges++;`` ` `                ``// Increase the countAdj values``                ``countAdj[v]++;``                ``countAdj[u]++;``                ``small[p]++;``                ``small[u]--;``                ``change(``ref` `answer, depth[u]);``            ``}``        ``}``    ``}`` ` `    ``// Colour this vertex 2 as``    ``// we are exiting out of``    ``// dfs for this node``    ``vis[v] = 2;``    ``return` `answer;``}`` ` `// Function to find the minimum labelled``// node to be removed such that``// there is no cycle in the undirected graph``static` `int` `minNodetoRemove(``    ``int` `n,``    ``ArrayList edges)``{`` ` `    ``// Construct the graph``    ``for` `(``int` `i = 0; i < edges.Count; i++) {``        ``((ArrayList)adj[((pair)edges[i]).first])``            ``.Add(((pair)edges[i]).second);``        ``((ArrayList)adj[((pair)edges[i]).second])``            ``.Add(((pair)edges[i]).first);``    ``}`` ` `    ``// Mark visited as false for each node``    ``Array.Fill(vis, 0);`` ` `    ``totBackEdges = 0;`` ` `    ``// Apply dfs on all unmarked nodes``    ``for` `(``int` `v = 1; v <= n; v++) {``        ``if` `(vis[v] == 0)``            ``dfs(v);``    ``}`` ` `    ``// If no backedges in the initial graph``    ``// this means that there is no cycle``    ``// So, return -1``    ``if` `(totBackEdges == 0)``        ``return` `-1;`` ` `    ``int` `node = -1;`` ` `    ``// Iterate through the vertices and``    ``// return the first node that``    ``// satisfies the condition``    ``for` `(``int` `v = 1; v <= n; v++) {`` ` `        ``// Check whether the count sum of``        ``// small[v] and count is the same as``        ``// the total back edges and``        ``// if the vertex v can be removed``        ``if` `((countAdj[v] + small[v] == totBackEdges) && isPossible[v] != 0) {``            ``node = v;``        ``}``        ``if` `(node != -1)``            ``break``;``    ``}`` ` `    ``return` `node;``}`` ` `// Driver code``static` `void` `Main()``{``    ``int` `N = 5;``    ``ArrayList edges = ``new` `ArrayList();``    ``for``(``int` `i = 0; i < MAX; i++)``    ``{``        ``adj.Add(``new` `ArrayList());``    ``}``    ``edges.Add(``new` `pair(5, 1));``    ``edges.Add(``new` `pair(5, 2));``    ``edges.Add(``new` `pair(1, 2));``    ``edges.Add(``new` `pair(2, 3));``    ``edges.Add(``new` `pair(2, 4));`` ` `    ``Console.Write(minNodetoRemove(N, edges));``  ``}``}` `// This code is contributed by rutvik_56`

## Javascript

 ``
Output:
`1`

Time Complexity: O(N + M), where N is the number of nodes and M is the number of edges.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up