Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Tree, Back, Edge and Cross Edges in DFS of Graph

  • Difficulty Level : Easy
  • Last Updated : 12 Dec, 2021

Consider a directed graph given in below, DFS of the below graph is 1 2 4 6 3 5 7 8. In below diagram if DFS is applied on this graph a tree is obtained which is connected using green edges.
 

Tree Edge: It is an edge which is present in the tree obtained after applying DFS on the graph. All the Green edges are tree edges. 
Forward Edge: It is an edge (u, v) such that v is descendant but not part of the DFS tree. Edge from 1 to 8 is a forward edge. 
Back edge: It is an edge (u, v) such that v is ancestor of node u but not part of DFS tree. Edge from 6 to 2 is a back edge. Presence of back edge indicates a cycle in directed graph
Cross Edge: It is a edge which connects two node such that they do not have any ancestor and a descendant relationship between them. Edge from node 5 to 4 is cross edge.

Time Complexity(DFS)

Since all the nodes and vertices are visited, the average time complexity for DFS on a graph is O(V + E), where V is the number of vertices and E is the number of edges. In case of DFS on a tree, the time complexity is O(V), where V is the number of nodes.

Algorithm(DFS)

Pick any node. If it is unvisited, mark it as visited and recur on all its adjacent nodes.

Repeat until all the nodes are visited, or the node to be searched is found.

Example:

Implement DFS using adjacency list take a directed graph of size n=10, and randomly select number of edges in the graph varying from 9 to 45. Identify each edge as forward edge, tree edge, back edge and cross edge.

Python3




# code
import random
 
 
class Graph:
    # instance variables
    def __init__(self, v):
        # v is the number of nodes/vertices
        self.time = 0
        self.traversal_array = []
        self.v = v
        # e is the number of edge (randomly chosen between 9 to 45)
        self.e = random.randint(9, 45)
        # adj. list for graph
        self.graph_list = [[] for _ in range(v)]
        # adj. matrix for graph
        self.graph_matrix = [[0 for _ in range(v)] for _ in range(v)]
 
    # function to create random graph
    def create_random_graph(self):
        # add edges upto e
        for i in range(self.e):
            # choose src and dest of each edge randomly
            src = random.randrange(0, self.v)
            dest = random.randrange(0, self.v)
            # re-choose if src and dest are same or src and dest already has an edge
            while src == dest and self.graph_matrix[src][dest] == 1:
                src = random.randrange(0, self.v)
                dest = random.randrange(0, self.v)
            # add the edge to graph
            self.graph_list[src].append(dest)
            self.graph_matrix[src][dest] = 1
 
    # function to print adj list
    def print_graph_list(self):
        print("Adjacency List Representation:")
        for i in range(self.v):
            print(i, "-->", *self.graph_list[i])
        print()
 
    # function to print adj matrix
    def print_graph_matrix(self):
        print("Adjacency Matrix Representation:")
        for i in self.graph_matrix:
            print(i)
        print()
 
    # function the get number of edges
    def number_of_edges(self):
        return self.e
 
    # function for dfs
    def dfs(self):
        self.visited = [False]*self.v
        self.start_time = [0]*self.v
        self.end_time = [0]*self.v
 
        for node in range(self.v):
            if not self.visited[node]:
                self.traverse_dfs(node)
        print()
        print("DFS Traversal: ", self.traversal_array)
        print()
 
    def traverse_dfs(self, node):
        # mark the node visited
        self.visited[node] = True
        # add the node to traversal
        self.traversal_array.append(node)
        # get the starting time
        self.start_time[node] = self.time
        # increment the time by 1
        self.time += 1
        # traverse through the neighbours
        for neighbour in self.graph_list[node]:
            # if a node is not visited
            if not self.visited[neighbour]:
                # marks the edge as tree edge
                print('Tree Edge:', str(node)+'-->'+str(neighbour))
                # dfs from that node
                self.traverse_dfs(neighbour)
            else:
                # when the parent node is traversed after the neighbour node
                if self.start_time[node] > self.start_time[neighbour] and self.end_time[node] < self.end_time[neighbour]:
                    print('Back Edge:', str(node)+'-->'+str(neighbour))
                # when the neighbour node is a descendant but not a part of tree
                elif self.start_time[node] < self.start_time[neighbour] and self.end_time[node] > self.end_time[neighbour]:
                    print('Forward Edge:', str(node)+'-->'+str(neighbour))
                # when parent and neighbour node do not have any ancestor and a descendant relationship between them
                elif self.start_time[node] > self.start_time[neighbour] and self.end_time[node] > self.end_time[neighbour]:
                    print('Cross Edge:', str(node)+'-->'+str(neighbour))
            self.end_time[node] = self.time
            self.time += 1
 
 
if __name__ == "__main__":
    n = 10
    g = Graph(n)
    g.create_random_graph()
    g.print_graph_list()
    g.print_graph_matrix()
    g.dfs()

 OUTPUT:


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!