Minimum increments to modify array such that value of any array element can be splitted to make all remaining elements equal
Given an array arr[] consisting of N elements, the task is to find the minimum number of increments required to be performed on the given array such that after selecting any array element at any index and splitting its value to the other array elements makes all other N – 1 elements equal.
Examples:
Input: N = 3, arr[] = {2, 3, 7}
Output: 2
Explanation:
Incrementing arr[0] and arr[1] by 1 modifies arr[] to {3, 4, 7}.
Removing arr[0] and adding to arr[1] makes the array {7, 7}.
Removing arr[1] and adding to arr[0] makes the array {7, 7}
Removing arr[2] and adding 3 to arr[1] and 4 to arr[0] makes the array {7, 7}.
Therefore, the count of increments required is 2.Input: N = 3, arr[] = {0, 2, 0}
Output: 2
Approach: Follow the below steps to solve the problem:
- Find the sum of the given array elements and the maximum element present in that array and store it in variables, say sum and maxelement.
- All remaining N – 1 elements must be equal to ceil(sum / N-1). Let this value be K.
- As the element can only be increased by 1, set K equal to maxelement if maxelement is greater than K.
- Now, each N – 1 value should be equal to K. Therefore, the final sum should be K * (N-1).
- Hence, the total number of moves required is K*(N – 1) – sum.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to count minimum moves void minimumMoves( int arr[], int N) { // Stores sum of given array int sum = 0; // Stores maximum array element int maxelement = -1; // Base Case if (N == 2) { // If N is 2, the answer // will always be 0 cout << 0; } // Traverse the array for ( int i = 0; i < N; i++) { // Calculate sum of the array sum += arr[i]; // Finding maximum element maxelement = max(maxelement, arr[i]); } // Calculate ceil(sum/N-1) int K = (sum + N - 2) / (N - 1); // If k is smaller than maxelement K = max(maxelement, K); // Final sum - original sum int ans = K * (N - 1) - sum; // Print the minimum number // of increments required cout << ans; } // Driver Code int main() { // Given array int arr[] = { 2, 3, 7 }; // Size of given array int N = 3; // Function Call minimumMoves(arr, N); return 0; } |
Java
// Java program for the above approach import java.io.*; class GFG { // Function to find the minimum moves public static void minimumMoves( int [] arr, int N) { // Stores the sum of the array int sum = 0 ; // Store the maximum element int maxelement = - 1 ; // Base Case if (N == 2 ) { // If N is 2, the answer // will always be 0 System.out.print( "0" ); return ; } // Traverse the array for ( int i = 0 ; i < N; i++) { // Calculate sum of the array sum += arr[i]; // Finding maximum element maxelement = Math.max( maxelement, arr[i]); } // Calculate ceil(sum/N-1) int k = (sum + N - 2 ) / (N - 1 ); // If k is smaller than maxelement k = Math.max(maxelement, k); // Final sum - original sum int ans = k * (N - 1 ) - sum; // Print the minimum number // of increments required System.out.println(ans); } // Driver Code public static void main(String[] args) { // Given array int [] arr = { 2 , 3 , 7 }; // Size of given array int N = arr.length; // Function Call minimumMoves(arr, N); } } |
Python3
# Python3 program for the above approach # Function to count minimum moves def minimumMoves(arr, N): # Stores sum of given array sum = 0 # Stores maximum array element maxelement = - 1 # Base Case if (N = = 2 ): # If N is 2, the answer # will always be 0 print ( 0 , end = "") # Traverse the array for i in range (N): # Calculate sum of the array sum + = arr[i] # Finding maximum element maxelement = max (maxelement, arr[i]) # Calculate ceil(sum/N-1) K = ( sum + N - 2 ) / / (N - 1 ) # If k is smaller than maxelement K = max (maxelement, K) # Final sum - original sum ans = K * (N - 1 ) - sum # Print the minimum number # of increments required print (ans) # Driver Code if __name__ = = '__main__' : # Given array arr = [ 2 , 3 , 7 ] # Size of given array N = 3 # Function Call minimumMoves(arr, N) # This code is contributed by mohit kumar 29 |
C#
// C# program for the above approach using System; class GFG { // Function to find the minimum moves static void minimumMoves( int [] arr, int N) { // Stores the sum of the array int sum = 0; // Store the maximum element int maxelement = -1; // Base Case if (N == 2) { // If N is 2, the answer // will always be 0 Console.Write( "0" ); return ; } // Traverse the array for ( int i = 0; i < N; i++) { // Calculate sum of the array sum += arr[i]; // Finding maximum element maxelement = Math.Max( maxelement, arr[i]); } // Calculate ceil(sum/N-1) int k = (sum + N - 2) / (N - 1); // If k is smaller than maxelement k = Math.Max(maxelement, k); // Final sum - original sum int ans = k * (N - 1) - sum; // Print the minimum number // of increments required Console.WriteLine(ans); } // Driver code static void Main() { // Given array int [] arr = { 2, 3, 7 }; // Size of given array int N = arr.Length; // Function Call minimumMoves(arr, N); } } // This code is contributed by divyesh072019. |
Javascript
<script> // Javascript program for the above approach // Function to find the minimum moves function minimumMoves(arr, N) { // Stores the sum of the array let sum = 0; // Store the maximum element let maxelement = -1; // Base Case if (N == 2) { // If N is 2, the answer // will always be 0 document.write( "0" ); return ; } // Traverse the array for (let i = 0; i < N; i++) { // Calculate sum of the array sum += arr[i]; // Finding maximum element maxelement = Math.max( maxelement, arr[i]); } // Calculate ceil(sum/N-1) let k = (sum + N - 2) / (N - 1); // If k is smaller than maxelement k = Math.max(maxelement, k); // Final sum - original sum let ans = k * (N - 1) - sum; // Print the minimum number // of increments required document.write(ans); } // Given array let arr = [ 2, 3, 7 ]; // Size of given array let N = arr.length; // Function Call minimumMoves(arr, N); </script> |
2
Time Complexity: O(N)
Auxiliary Space: O(N)
Please Login to comment...