# Minimum increments required to make absolute difference of all pairwise adjacent array elements even

Given an array arr[] consisting of N integers, the task is to find the minimum number of array elements required to be incremented to make the absolute difference between all pairwise consecutive elements even.

Examples:

Input: arr[] = {2, 4, 3, 1, 8}
Output: 2
Explanation:
Operation 1: Incrementing the array element arr[2](= 3) modifies the array to {2, 4, 4, 1, 8}.
Operation 2: Incrementing the array element arr[3](= 1) modifies the array to {2, 4, 4, 2, 8}.
Therefore, the difference between all pairwise adjacent array elements is even.

Input: arr[] = {1, 3, 5, 2}
Output: 1

Approach: The given problem can be solved by using the fact that the difference between two numbers is even if and only if both numbers are odd or even. Therefore, the idea is to increase either all the odd or even numbers. Both numbers are even and, for the minimum count of increment, print the minimum of the count of odd numbers or count of even numbers is a result.

Below is the implementation of the above approach:

## C++

 `// C++ program for the above approach`   `#include ` `using` `namespace` `std;`   `// Function to find the minimum number` `// of increments of array elements` `// required to make difference between` `// all pairwise adjacent elements even` `int` `minOperations(``int` `arr[], ``int` `n)` `{` `    ``// Stores the count of` `    ``// odd and even elements` `    ``int` `oddcount = 0, evencount = 0;`   `    ``// Traverse the array` `    ``for` `(``int` `i = 0; i < n; i++) {`   `        ``// Increment odd count` `        ``if` `(arr[i] % 2 == 1)` `            ``oddcount++;`   `        ``// Increment even count` `        ``else` `            ``evencount++;` `    ``}`   `    ``// Return the minimum number` `    ``// of operations required` `    ``return` `min(oddcount, evencount);` `}`   `// Driver Code` `int` `main()` `{` `    ``int` `arr[] = { 2, 4, 3, 1, 8 };` `    ``int` `N = ``sizeof``(arr) / ``sizeof``(arr[0]);` `    ``cout << minOperations(arr, N);`   `    ``return` `0;` `}`

## Java

 `// Java program for the above approach` `import` `java.util.*;` `import` `java.lang.*;`   `class` `GFG{` `    `  `// Function to find the minimum number` `// of increments of array elements` `// required to make difference between` `// all pairwise adjacent elements even` `static` `int` `minOperations(``int` `arr[], ``int` `n)` `{` `    `  `    ``// Stores the count of` `    ``// odd and even elements` `    ``int` `oddcount = ``0``, evencount = ``0``;`   `    ``// Traverse the array` `    ``for``(``int` `i = ``0``; i < n; i++) ` `    ``{` `        `  `        ``// Increment odd count` `        ``if` `(arr[i] % ``2` `== ``1``)` `            ``oddcount++;`   `        ``// Increment even count` `        ``else` `            ``evencount++;` `    ``}`   `    ``// Return the minimum number` `    ``// of operations required` `    ``return` `Math.min(oddcount, evencount);` `}`   `// Driver code` `public` `static` `void` `main (String[] args) ` `{` `    ``int` `arr[] = { ``2``, ``4``, ``3``, ``1``, ``8` `};` `    ``int` `N = arr.length;` `    `  `    ``System.out.println(minOperations(arr, N));` `}` `}`   `// This code is contributed by offbeat`

## Python3

 `# Python3 program for the above approach`   `# Function to find the minimum number` `# of increments of array elements` `# required to make difference between` `# all pairwise adjacent elements even` `def` `minOperations(arr, n):` `    `  `    ``# Stores the count of` `    ``# odd and even elements` `    ``oddcount, evencount ``=` `0``, ``0`   `    ``# Traverse the array` `    ``for` `i ``in` `range``(n):` `        `  `        ``# Increment odd count` `        ``if` `(arr[i] ``%` `2` `=``=` `1``):` `            ``oddcount ``+``=` `1` `            `  `        ``# Increment even count` `        ``else``:` `            ``evencount ``+``=` `1`   `    ``# Return the minimum number` `    ``# of operations required` `    ``return` `min``(oddcount, evencount)`   `# Driver Code` `if` `__name__ ``=``=` `'__main__'``:` `    `  `    ``arr ``=` `[ ``2``, ``4``, ``3``, ``1``, ``8` `]` `    ``N ``=` `len``(arr)` `    `  `    ``print` `(minOperations(arr, N))`   `# This code is contributed by mohit kumar 29`

## C#

 `// C# program for the above approach` `using` `System;` `class` `GFG {`   `    ``// Function to find the minimum number` `    ``// of increments of array elements` `    ``// required to make difference between` `    ``// all pairwise adjacent elements even` `    ``static` `int` `minOperations(``int``[] arr, ``int` `n)` `    ``{` `        ``// Stores the count of` `        ``// odd and even elements` `        ``int` `oddcount = 0, evencount = 0;`   `        ``// Traverse the array` `        ``for` `(``int` `i = 0; i < n; i++) {`   `            ``// Increment odd count` `            ``if` `(arr[i] % 2 == 1)` `                ``oddcount++;`   `            ``// Increment even count` `            ``else` `                ``evencount++;` `        ``}`   `        ``// Return the minimum number` `        ``// of operations required` `        ``return` `Math.Min(oddcount, evencount);` `    ``}`   `    ``// Driver Code` `    ``public` `static` `void` `Main()` `    ``{` `        ``int``[] arr = { 2, 4, 3, 1, 8 };` `        ``int` `N = (arr.Length);` `        ``Console.WriteLine(minOperations(arr, N));` `    ``}` `}`   `// This code is contributed by ukasp.`

## Javascript

 ``

Output:

`2`

Time Complexity: O(N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next