Skip to content
Related Articles

Related Articles

Improve Article

Minimum increments or decrements by 1 required to make all array elements in AP

  • Difficulty Level : Medium
  • Last Updated : 07 Sep, 2021

Given an array arr[] consisting of N integers, the task is to find the minimum number of increment/decrement by 1 required to be performed on array elements to make all the elements of the given array arr[] in AP. If it is not possible to make the array in AP, then print “-1”.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

Input: arr[] = {19, 16, 9, 5, 0}
Output: 3
Explanation:
Following are the order of increment/decrements of array elements is made:

  1. Increment array element arr[0](= 19) by 1.
  2. Decrement array element arr[1](= 16) by 1.
  3. Increment array element arr[2](= 9) by 1.

After the above operations, the array arr[] modifies to {20, 15, 10, 5, 0}, which is in AP with first term 20 and common difference -5. Therefore, the total count of element is 3.



Input: arr[] = {1, 2, 3, 4, 10}
Output: -1

Approach: The given problem can be solved by finding the first term and the common difference from the first two elements and then check if all elements can be changed to the AP sequence with the given first term and common difference by simply iterating over the array. Follow the steps below to solve the problem: 

  • If N is less than equal to 2, then print 0, because each such sequence is an Arithmetic Progression.
  • Initialize a variable say, res as N + 1 to store the answer.
  • Iterate in the range [-1, 1] using the variable a and perform the following steps: 
    • Iterate in the range [-1, 1] using the variable b and perform the following steps:
      • Initialize a variable say changes as 0 to store the count of changed elements of the array arr[].
      • If a is not equal to 0, then increase the value of changes by 1.
      • If b is not equal to 0, then increase the value of changes by 1.
      • Initialize a variable say, orig as arr[0] + a to store the first element and diff as (arr[1] + b) – (arr[0] + a) to store the common difference of the arithmetic progression.
      • Initialize a variable say, good as true to store whether the arithmetic progression sequence with first term orig and common difference diff is possible or not.
      • Iterate in the range  [2, N-1] using the variable i and perform the following steps:
        • Initialize a variable actual as orig+i*diff to store the actual element of the arithmetic progression at index i.
        • If abs(actual – arr[i]) is greater than 1, then such arithmetic progression is unreachable. Then Set the value of good to false and break the loop.
        • Else, if actual is not equal to arr[i], increase the value of changes by 1.
      • After iterating through the inner for loop, update the value of res to min(changes, res).
  • After completing the above steps, if res is greater than N then assign -1 to res. Otherwise, print the value of res as the answer.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum number
// of elements to be changed to convert
// the array into an AP
int findMinimumMoves(int N, int arr[])
{
    // If N is less than 3
    if (N <= 2) {
        return 0;
    }
 
    // Stores the answer
    int res = N + 1;
 
    // Iterate in the range [-1, 1]
    for (int a = -1; a <= 1; a++) {
 
        // Iterate in the range [-1, 1]
        for (int b = -1; b <= 1; b++) {
 
            // Stores the total changes
            int changes = 0;
 
            if (a != 0) {
                changes++;
            }
 
            if (b != 0) {
                changes++;
            }
 
            // Stores the first element
            // of the AP
            int orig = (arr[0] + a);
 
            // Stores the common difference
            // of the AP
            int diff = (arr[1] + b) - (arr[0] + a);
 
            // Stores whether it is
            // possible to convert the
            // array into AP
            bool good = true;
 
            // Iterate in the range [2, N-1]
            for (int i = 2; i < N; i++) {
 
                // Stores the ith element
                // of the AP
                int actual = orig + i * diff;
 
                // If abs(actual-arr[i])
                // is greater than 1
                if (abs(actual - arr[i]) > 1) {
 
                    // Mark as false
                    good = false;
                    break;
                }
                // If actual is not
                // equal to arr[i]
                if (actual != arr[i])
                    changes++;
            }
            if (!good)
                continue;
 
            // Update the value of res
            res = min(res, changes);
        }
    }
 
    // If res is greater than N
    if (res > N)
        res = -1;
 
    // Return the value of res
    return res;
}
 
// Driver Code
int main()
{
    int arr[] = { 19, 16, 9, 5, 0 };
    int N = sizeof(arr) / sizeof(arr[0]);
    cout << findMinimumMoves(N, arr);
 
    return 0;
}

Java




// Java program for the above approach
import java.io.*;
 
class GFG{
     
// Function to find the minimum number
// of elements to be changed to convert
// the array into an AP
static int findMinimumMoves(int N, int arr[])
{
     
    // If N is less than 3
    if (N <= 2)
    {
        return 0;
    }
 
    // Stores the answer
    int res = N + 1;
 
    // Iterate in the range [-1, 1]
    for(int a = -1; a <= 1; a++)
    {
         
        // Iterate in the range [-1, 1]
        for(int b = -1; b <= 1; b++)
        {
             
            // Stores the total changes
            int changes = 0;
 
            if (a != 0)
            {
                changes++;
            }
 
            if (b != 0)
            {
                changes++;
            }
 
            // Stores the first element
            // of the AP
            int orig = (arr[0] + a);
 
            // Stores the common difference
            // of the AP
            int diff = (arr[1] + b) - (arr[0] + a);
 
            // Stores whether it is
            // possible to convert the
            // array into AP
            boolean good = true;
 
            // Iterate in the range [2, N-1]
            for(int i = 2; i < N; i++)
            {
                 
                // Stores the ith element
                // of the AP
                int actual = orig + i * diff;
 
                // If abs(actual-arr[i])
                // is greater than 1
                if (Math.abs(actual - arr[i]) > 1)
                {
                     
                    // Mark as false
                    good = false;
                    break;
                }
                 
                // If actual is not
                // equal to arr[i]
                if (actual != arr[i])
                    changes++;
            }
            if (!good)
                continue;
 
            // Update the value of res
            res = Math.min(res, changes);
        }
    }
 
    // If res is greater than N
    if (res > N)
        res = -1;
 
    // Return the value of res
    return res;
}
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 19, 16, 9, 5, 0 };
    int N = arr.length;
 
    System.out.println(findMinimumMoves(N, arr));
}
}
 
// This code is contributed by Potta Lokesh

Python3




# Python3 program for the above approach
 
# Function to find the minimum number
# of elements to be changed to convert
# the array into an AP
def findMinimumMoves(N, arr):
     
    # If N is less than 3
    if (N <= 2):
        return 0
 
    # Stores the answer
    res = N + 1
 
    # Iterate in the range [-1, 1]
    for a in range(-1, 2, 1):
 
        # Iterate in the range [-1, 1]
        for b in range(-1, 2, 1):
             
            # Stores the total changes
            changes = 0
 
            if (a != 0):
                changes += 1
 
            if (b != 0):
                changes += 1
 
            # Stores the first element
            # of the AP
            orig = (arr[0] + a)
 
            # Stores the common difference
            # of the AP
            diff = (arr[1] + b) - (arr[0] + a)
 
            # Stores whether it is
            # possible to convert the
            # array into AP
            good = True
 
            # Iterate in the range [2, N-1]
            for i in range(2, N, 1):
                 
                # Stores the ith element
                # of the AP
                actual = orig + i * diff
 
                # If abs(actual-arr[i])
                # is greater than 1
                if (abs(actual - arr[i]) > 1):
 
                    # Mark as false
                    good = False
                    break
 
                # If actual is not
                # equal to arr[i]
                if (actual != arr[i]):
                    changes += 1
 
            if (good == False):
                continue
 
            # Update the value of res
            res = min(res, changes)
 
    # If res is greater than N
    if (res > N):
        res = -1
 
    # Return the value of res
    return res
 
# Driver Code
if __name__ == '__main__':
     
    arr = [ 19, 16, 9, 5, 0 ]
    N = len(arr)
     
    print(findMinimumMoves(N, arr))
 
# This code is contributed by ipg2016107

C#




// C# program for the above approach
using System;
 
class GFG{
     
// Function to find the minimum number
// of elements to be changed to convert
// the array into an AP
static int findMinimumMoves(int N, int[] arr)
{
     
    // If N is less than 3
    if (N <= 2)
    {
        return 0;
    }
 
    // Stores the answer
    int res = N + 1;
 
    // Iterate in the range [-1, 1]
    for(int a = -1; a <= 1; a++)
    {
         
        // Iterate in the range [-1, 1]
        for(int b = -1; b <= 1; b++)
        {
             
            // Stores the total changes
            int changes = 0;
 
            if (a != 0)
            {
                changes++;
            }
 
            if (b != 0)
            {
                changes++;
            }
 
            // Stores the first element
            // of the AP
            int orig = (arr[0] + a);
 
            // Stores the common difference
            // of the AP
            int diff = (arr[1] + b) - (arr[0] + a);
 
            // Stores whether it is
            // possible to convert the
            // array into AP
            bool good = true;
 
            // Iterate in the range [2, N-1]
            for(int i = 2; i < N; i++)
            {
                 
                // Stores the ith element
                // of the AP
                int actual = orig + i * diff;
 
                // If abs(actual-arr[i])
                // is greater than 1
                if (Math.Abs(actual - arr[i]) > 1)
                {
                     
                    // Mark as false
                    good = false;
                    break;
                }
                 
                // If actual is not
                // equal to arr[i]
                if (actual != arr[i])
                    changes++;
            }
            if (!good)
                continue;
 
            // Update the value of res
            res = Math.Min(res, changes);
        }
    }
 
    // If res is greater than N
    if (res > N)
        res = -1;
 
    // Return the value of res
    return res;
}
 
 
// Driver code
static public void Main()
{
    int[] arr = { 19, 16, 9, 5, 0 };
    int N = arr.Length;
 
    Console.WriteLine(findMinimumMoves(N, arr));
}
}
 
// This code is contributed by target_2.

Javascript




<script>
 
// Javascript program for the above approach
 
// Function to find the minimum number
// of elements to be changed to convert
// the array into an AP
function findMinimumMoves(N, arr)
{
     
    // If N is less than 3
    if (N <= 2)
    {
        return 0;
    }
 
    // Stores the answer
    let res = N + 1;
 
    // Iterate in the range [-1, 1]
    for(let a = -1; a <= 1; a++)
    {
         
        // Iterate in the range [-1, 1]
        for(let b = -1; b <= 1; b++)
        {
             
            // Stores the total changes
            let changes = 0;
 
            if (a != 0)
            {
                changes++;
            }
 
            if (b != 0)
            {
                changes++;
            }
 
            // Stores the first element
            // of the AP
            let orig = (arr[0] + a);
 
            // Stores the common difference
            // of the AP
            let diff = (arr[1] + b) - (arr[0] + a);
 
            // Stores whether it is
            // possible to convert the
            // array into AP
            let good = true;
 
            // Iterate in the range [2, N-1]
            for(let i = 2; i < N; i++)
            {
                 
                // Stores the ith element
                // of the AP
                let actual = orig + i * diff;
 
                // If abs(actual-arr[i])
                // is greater than 1
                if (Math.abs(actual - arr[i]) > 1)
                {
                     
                    // Mark as false
                    good = false;
                    break;
                }
                 
                // If actual is not
                // equal to arr[i]
                if (actual != arr[i])
                    changes++;
            }
            if (!good)
                continue;
 
            // Update the value of res
            res = Math.min(res, changes);
        }
    }
 
    // If res is greater than N
    if (res > N)
        res = -1;
 
    // Return the value of res
    return res;
}
 
// Driver Code
let arr = [ 19, 16, 9, 5, 0 ];
let N = arr.length;
 
document.write(findMinimumMoves(N, arr));
 
// This code is contributed by target_2
     
</script>
Output: 
3

 

Time Complexity: O(N)
Auxiliary Space: O(1)




My Personal Notes arrow_drop_up
Recommended Articles
Page :