Minimum Increment / decrement to make array elements equal
Given an array of integers where . In one operation you can either Increment/Decrement any element by 1. The task is to find the minimum operations needed to be performed on the array elements to make all array elements equal.
Examples:
Input : A[] = { 1, 5, 7, 10 } Output : 11 Increment 1 by 4, 5 by 0. Decrement 7 by 2, 10 by 5. New array A = { 5, 5, 5, 5 } with cost of operations = 4 + 0 + 2 + 5 = 11.
Input : A = { 10, 2, 20 } Output : 18
Approach:
- Sort the array of Integers in increasing order.
- Now, to make all elements equal with min cost. We will have to make the elements equal to the middle element of this sorted array. So, select the middle value, Let it be K.
Note: In case of even numbers of elements, we will have to check for the costs of both middle elements and take the minimum. - If A[i] < K, Increment the element by K – A[i].
- If A[i] > K, Decrement the element by A[i] – K.
- Update cost of each operation performed.
Below is the implementation of above approach:
C++
// C++ program to find minimum Increment or // decrement to make array elements equal #include <bits/stdc++.h> using namespace std; // Function to return minimum operations need // to be make each element of array equal int minCost( int A[], int n) { // Initialize cost to 0 int cost = 0; // Sort the array sort(A, A + n); // Middle element int K = A[n / 2]; // Find Cost for ( int i = 0; i < n; ++i) cost += abs (A[i] - K); // If n, is even. Take minimum of the // Cost obtained by considering both // middle elements if (n % 2 == 0) { int tempCost = 0; K = A[(n / 2) - 1]; // Find cost again for ( int i = 0; i < n; ++i) tempCost += abs (A[i] - K); // Take minimum of two cost cost = min(cost, tempCost); } // Return total cost return cost; } // Driver Code int main() { int A[] = { 1, 6, 7, 10 }; int n = sizeof (A) / sizeof (A[0]); cout << minCost(A, n); return 0; } |
Java
// Java program to find minimum Increment or // decrement to make array elements equal import java.util.*; class GfG { // Function to return minimum operations need // to be make each element of array equal static int minCost( int A[], int n) { // Initialize cost to 0 int cost = 0 ; // Sort the array Arrays.sort(A); // Middle element int K = A[n / 2 ]; // Find Cost for ( int i = 0 ; i < n; ++i) cost += Math.abs(A[i] - K); // If n, is even. Take minimum of the // Cost obtained by considering both // middle elements if (n % 2 == 0 ) { int tempCost = 0 ; K = A[(n / 2 ) - 1 ]; // Find cost again for ( int i = 0 ; i < n; ++i) tempCost += Math.abs(A[i] - K); // Take minimum of two cost cost = Math.min(cost, tempCost); } // Return total cost return cost; } // Driver Code public static void main(String[] args) { int A[] = { 1 , 6 , 7 , 10 }; int n = A.length; System.out.println(minCost(A, n)); } } |
Python3
# Python3 program to find minimum Increment or # decrement to make array elements equal # Function to return minimum operations need # to be make each element of array equal def minCost(A, n): # Initialize cost to 0 cost = 0 # Sort the array A.sort(); # Middle element K = A[ int (n / 2 )] #Find Cost for i in range ( 0 , n): cost = cost + abs (A[i] - K) # If n, is even. Take minimum of the # Cost obtained by considering both # middle elements if n % 2 = = 0 : tempCost = 0 K = A[ int (n / 2 ) - 1 ] # FInd cost again for i in range ( 0 , n): tempCost = tempCost + abs (A[i] - K) # Take minimum of two cost cost = min (cost, tempCost) # Return total cost return cost # Driver code A = [ 1 , 6 , 7 , 10 ] n = len (A) print (minCost(A, n)) # This code is contributed # by Shashank_Sharma |
C#
// C# program to find minimum Increment or // decrement to make array elements equal using System; class GFG { // Function to return minimum operations need // to be make each element of array equal static int minCost( int []A, int n) { // Initialize cost to 0 int cost = 0; // Sort the array Array.Sort(A); // Middle element int K = A[n / 2]; // Find Cost for ( int i = 0; i < n; ++i) cost += Math.Abs(A[i] - K); // If n, is even. Take minimum of the // Cost obtained by considering both // middle elements if (n % 2 == 0) { int tempCost = 0; K = A[(n / 2) - 1]; // Find cost again for ( int i = 0; i < n; ++i) tempCost += Math.Abs(A[i] - K); // Take minimum of two cost cost = Math.Min(cost, tempCost); } // Return total cost return cost; } // Driver Code public static void Main(String[] args) { int []A = new int []{ 1, 6, 7, 10 }; int n = A.Length; Console.WriteLine(minCost(A, n)); } } |
PHP
<?php // PHP program to find minimum Increment or // decrement to make array elements equal // Function to return minimum operations need // to be make each element of array equal function minCost( $A , $n ) { // Initialize cost to 0 $cost = 0; // Sort the array sort( $A ); // Middle element $K = $A [ $n / 2]; // Find Cost for ( $i = 0; $i < $n ; ++ $i ) $cost += abs ( $A [ $i ] - $K ); // If n, is even. Take minimum of the // Cost obtained by considering both // middle elements if ( $n % 2 == 0) { $tempCost = 0; $K = $A [( $n / 2) - 1]; // Find cost again for ( $i = 0; $i < $n ; ++ $i ) $tempCost += abs ( $A [ $i ] - $K ); // Take minimum of two cost $cost = min( $cost , $tempCost ); } // Return total cost return $cost ; } // Driver Code $A = array ( 1, 6, 7, 10 ); $n = sizeof( $A ); echo minCost( $A , $n ); // This code is contributed // by Sach_Code ?> |
Javascript
<script> // Javascript program to find minimum Increment or // decrement to make array elements equal // Function to return minimum operations need // to be make each element of array equal function minCost(A,n) { // Initialize cost to 0 var cost = 0; // Sort the array A.sort(); // Middle element var K = A[parseInt(n/2)]; var i; // Find Cost for (i = 0; i < n; ++i) cost += Math.abs(A[i] - K); // If n, is even. Take minimum of the // Cost obtained by considering both // middle elements if (n % 2 == 0) { var tempCost = 0; K = A[parseInt(n / 2) - 1]; // Find cost again for (i = 0; i < n; ++i) tempCost += Math.abs(A[i] - K); // Take minimum of two cost cost = Math.min(cost, tempCost); } // Return total cost return cost; } // Driver Code var A = [1, 6, 7, 10]; var n = A.length; document.write(minCost(A, n)); </script> |
Output:
10
Time Complexity: O(N*log(N)), Auxiliary Space: O(1)
Further Optimization We can find median in linear time and reduce the time complexity to O(N)
Please Login to comment...