Given an array a, your task is to convert it into a non-increasing form such that we can either increment or decrement the array value by 1 in the minimum changes possible.
Examples :
Input : a[] = {3, 1, 2, 1}
Output : 1
Explanation : We can convert the array into 3 1 1 1 by changing 3rd element of array i.e. 2 into its previous integer 1 in one step hence only one step is required.
Input : a[] = {3, 1, 5, 1}
Output : 4
Explanation : We need to decrease 5 to 1 to make array sorted in non-increasing order.
Input : a[] = {1, 5, 5, 5}
Output : 4
Explanation : We need to increase 1 to 5.
Brute-Force approach: We consider both possibilities for every element and find a minimum of two possibilities.
Efficient Approach Method 1 (Using Min-Heap):
Calculate the sum of absolute differences between the final array elements and the current array elements. Thus, the answer will be the sum of the difference between the ith element and the smallest element that occurred until then. For this, we can maintain a min-heap to find the smallest element encountered till then. In the min-priority queue, we will put the elements, and new elements are compared with the previous minimum. If the new minimum is found we will update it, this is done because each of the next elements which are coming should be smaller than the current minimum element found till now. Here, we calculate the difference so that we can get how much we have to change the current number so that it will be equal or less than previous numbers encountered. Lastly, the sum of all these differences will be our answer as this will give the final value up to which we have to change the elements.
Below is the implementation of the above approach:
C++14
#include <bits/stdc++.h>
using namespace std;
int DecreasingArray( int a[], int n)
{
int sum = 0, dif = 0;
priority_queue< int , vector< int >, greater< int > > pq;
for ( int i = 0; i < n; i++) {
if (!pq.empty() && pq.top() < a[i]) {
dif = a[i] - pq.top();
sum += dif;
pq.pop();
pq.push(a[i]);
}
pq.push(a[i]);
}
return sum;
}
int main()
{
int a[] = { 3, 1, 2, 1 };
int n = sizeof (a) / sizeof (a[0]);
cout << DecreasingArray(a, n);
return 0;
}
|
Java
import java.util.PriorityQueue;
class GFG
{
public static int DecreasingArray( int a[], int n)
{
int sum = 0 , dif = 0 ;
PriorityQueue<Integer> pq = new PriorityQueue<>();
for ( int i = 0 ; i < n; i++)
{
if (!pq.isEmpty() && pq.element() < a[i])
{
dif = a[i] - pq.element();
sum += dif;
pq.remove();
pq.add(a[i]);
}
pq.add(a[i]);
}
return sum;
}
public static void main(String[] args)
{
int [] a = { 3 , 1 , 2 , 1 };
int n = a.length;
System.out.println(DecreasingArray(a, n));
}
}
|
Python3
from queue import PriorityQueue
def DecreasingArray(a, n):
ss, dif = ( 0 , 0 )
pq = PriorityQueue()
for i in range (n):
tmp = 0
if not pq.empty():
tmp = pq.get()
pq.put(tmp)
if not pq.empty() and tmp < a[i]:
dif = a[i] - tmp
ss + = dif
pq.get()
pq.put(a[i])
pq.put(a[i])
return ss
if __name__ = = "__main__" :
a = [ 3 , 1 , 2 , 1 ]
n = len (a)
print (DecreasingArray(a, n))
|
C#
using System;
using System.Collections.Generic;
class GFG
{
static int DecreasingArray( int [] a, int n)
{
int sum = 0, dif = 0;
List< int > pq = new List< int >();
for ( int i = 0; i < n; i++)
{
if (pq.Count > 0 && pq[0] < a[i])
{
dif = a[i] - pq[0];
sum += dif;
pq.RemoveAt(0);
pq.Add(a[i]);
}
pq.Add(a[i]);
pq.Sort();
}
return sum;
}
static void Main()
{
int [] a = { 3, 1, 2, 1 };
int n = a.Length;
Console.Write(DecreasingArray(a, n));
}
}
|
Javascript
<script>
function DecreasingArray(a, n)
{
var sum = 0, dif = 0;
var pq = [];
for ( var i = 0; i < n; i++)
{
if (pq.length != 0 && pq[pq.length - 1] < a[i]) {
dif = a[i] - pq[pq.length - 1];
sum += dif;
pq.pop();
pq.push(a[i]);
}
pq.push(a[i]);
pq.sort((a, b)=>b - a);
}
return sum;
}
var a = [3, 1, 2, 1];
var n = a.length;
document.write(DecreasingArray(a, n));
</script>
|
Complexity Analysis:
- Time Complexity: O(n log(n))
- Auxiliary Space: O(n)
Method 2: Using Max-Heap:
Traverse in reverse order in the given array and keep maintaining the increasing property. If any element is smaller than the maximum of existing elements till that index then, we need to make some decrement operation on that maximum element so that it also follows the increasing property from back traversal and add the required operation in the answer.
Implementation:
C++
#include <bits/stdc++.h>
using namespace std;
int DecreasingArray( int arr[], int n)
{
int ans = 0;
priority_queue< int > pq;
for ( int i = n - 1; i >= 0; i--) {
if (!pq.empty() and pq.top() > arr[i]) {
ans += abs (arr[i] - pq.top());
pq.pop();
pq.push(arr[i]);
}
pq.push(arr[i]);
}
return ans;
}
int main()
{
int a[] = { 3, 1, 2, 1 };
int n = sizeof (a) / sizeof (a[0]);
cout << DecreasingArray(a, n);
return 0;
}
|
Java
import java.io.*;
import java.util.*;
class GFG {
public static int DecreasingArray( int arr[], int n)
{
int ans = 0 ;
PriorityQueue<Integer> pq = new PriorityQueue<>(
Collections.reverseOrder());
for ( int i = n - 1 ; i >= 0 ; i--) {
if (!pq.isEmpty() && pq.peek() > arr[i]) {
ans += Math.abs(arr[i] - pq.peek());
pq.poll();
pq.add(arr[i]);
}
pq.add(arr[i]);
}
return ans;
}
public static void main(String[] args)
{
int a[] = { 3 , 1 , 2 , 1 };
int n = a.length;
System.out.print(DecreasingArray(a, n));
}
}
|
Python3
def DecreasingArray(arr, n):
ans = 0
pq = []
for i in range (n - 1 , - 1 , - 1 ):
if pq and pq[ 0 ] > arr[i]:
ans + = abs (arr[i] - pq[ 0 ])
pq.pop( 0 )
pq.insert( 0 , arr[i])
pq.insert( 0 , arr[i])
return ans
a = [ 3 , 1 , 2 , 1 ]
n = len (a)
print (DecreasingArray(a, n))
|
C#
using System;
using System.Collections;
using System.Collections.Generic;
public class GFG {
public static int DecreasingArray( int [] arr, int n)
{
int ans = 0;
SortedSet< int > pq = new SortedSet< int >();
for ( int i = n - 1; i >= 0; i--) {
if (pq.Count > 0 && pq.Max > arr[i]) {
ans += Math.Abs(arr[i] - pq.Max);
pq.Remove(pq.Max);
pq.Add(arr[i]);
}
pq.Add(arr[i]);
}
return ans;
}
static public void Main()
{
int [] a = { 3, 1, 2, 1 };
int n = a.Length;
Console.WriteLine(DecreasingArray(a, n));
}
}
|
Javascript
function DecreasingArray(arr, n) {
let ans = 0;
let pq = [];
for (let i = n - 1; i >= 0; i--) {
if (pq.length != 0 && pq[0] > arr[i]) {
ans += Math.abs(arr[i] - pq[0]);
pq.pop();
pq.unshift(arr[i]);
}
pq.unshift(arr[i]);
}
return ans;
}
let a = [3, 1, 2, 1];
let n = a.length;
console.log(DecreasingArray(a, n));
|
Complexity Analysis:
- Time Complexity: O(n log(n))
- Auxiliary Space: O(n)
Also see : Convert to strictly increasing array with minimum changes.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!