Minimum distance to the corner of a grid from source

Given a binary grid of order r * c and an initial position. The task is to find the minimum distance from the source to get to the any corner of the grid. A move can be made to a cell grid[i][j] only if grid[i][j] = 0 and only left, right, up and down movements are permitted. If no valid path exists then print -1.

Examples:

Input: i = 1, j = 1, grid[][] = {{0, 0, 1}, {0, 0, 0}, {1, 1, 1}}
Output: 2
(1, 1) -> (1, 0) -> (0, 0)

Input: i = 0, j = 0, grid[][] = {{0, 1}, {1, 1}}
Output: 0
Source is already a corner of the grid.



Approach:

  • If source is already any of the corner then print 0.
  • Start traversing the grid starting with source using BFS as :
    • Insert cell position in queue.
    • Pop element from queue and mark it visited.
    • For each valid move adjacent to popped one, insert the cell position into queue.
    • On each move, update the minimum distance of the cell from initial position.
  • After the completion of the BFS, find the minimum distance from source to every corner.
  • Print the minimum among these in the end.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define row 5
#define col 5
  
// Global variables for grid, minDistance and visited array
int minDistance[row + 1][col + 1], visited[row + 1][col + 1];
  
// Queue for BFS
queue<pair<int, int> > que;
  
// Function to find whether the move is valid or not
bool isValid(int grid[][col], int i, int j)
{
    if (i < 0 || j < 0
        || j >= col || i >= row
        || grid[i][j] || visited[i][j])
        return false;
  
    return true;
}
  
// Function to return the minimum distance
// from source to the end of the grid
int minDistance(int grid[][col],
                           int sourceRow, int sourceCol)
{
    // If source is one of the destinations
    if ((sourceCol == 0 && sourceRow == 0)
        || (sourceCol == col - 1 && sourceRow == 0)
        || (sourceCol == 0 && sourceRow == row - 1)
        || (sourceCol == col - 1 && sourceRow == row - 1))
        return 0;
  
    // Set minimum value
    int minFromSource = row * col;
  
    // Precalculate minDistance of each grid with R * C
    for (int i = 0; i < row; i++)
        for (int j = 0; j < col; j++)
            minDistance[i][j] = row * col;
  
    // Insert source position in queue
    que.push(make_pair(sourceRow, sourceCol));
  
    // Update minimum distance to visit source
    minDistance[sourceRow][sourceCol] = 0;
  
    // Set source to visited
    visited[sourceRow][sourceCol] = 1;
  
    // BFS approach for calculating the minDistance
    // of each cell from source
    while (!que.empty()) {
  
        // Iterate over all four cells adjacent
        // to current cell
        pair<int, int> cell = que.front();
  
        // Initialize position of current cell
        int cellRow = cell.first;
        int cellCol = cell.second;
  
        // Cell below the current cell
        if (isValid(grid, cellRow + 1, cellCol)) {
  
            // Push new cell to the queue
            que.push(make_pair(cellRow + 1, cellCol));
  
            // Update one of its neightbor's distance
            minDistance[cellRow + 1][cellCol]
                = min(minDistance[cellRow + 1][cellCol],
                      minDistance[cellRow][cellCol] + 1);
            visited[cellRow + 1][cellCol] = 1;
        }
  
        // Above the current cell
        if (isValid(grid, cellRow - 1, cellCol)) {
            que.push(make_pair(cellRow - 1, cellCol));
            minDistance[cellRow - 1][cellCol]
                = min(minDistance[cellRow - 1][cellCol],
                      minDistance[cellRow][cellCol] + 1);
            visited[cellRow - 1][cellCol] = 1;
        }
  
        // Right cell
        if (isValid(grid, cellRow, cellCol + 1)) {
            que.push(make_pair(cellRow, cellCol + 1));
            minDistance[cellRow][cellCol + 1]
                = min(minDistance[cellRow][cellCol + 1],
                      minDistance[cellRow][cellCol] + 1);
            visited[cellRow][cellCol + 1] = 1;
        }
  
        // Left cell
        if (isValid(grid, cellRow, cellCol - 1)) {
            que.push(make_pair(cellRow, cellCol - 1));
            minDistance[cellRow][cellCol - 1]
                = min(minDistance[cellRow][cellCol - 1],
                      minDistance[cellRow][cellCol] + 1);
            visited[cellRow][cellCol - 1] = 1;
        }
  
        // Pop the the visited cell
        que.pop();
    }
  
    int i;
  
    // Minimum distance to the corner
    // of the first row, first column
    minFromSource = min(minFromSource,
                        minDistance[0][0]);
  
    // Minimum distance to the corner
    // of the last row, first column
    minFromSource = min(minFromSource,
                        minDistance[row - 1][0]);
  
    // Minimum distance to the corner
    // of the last row, last column
    minFromSource = min(minFromSource,
                        minDistance[row - 1][col - 1]);
  
    // Minimum distance to the corner
    // of the first row, last column
    minFromSource = min(minFromSource,
                        minDistance[0][col - 1]);
  
    // If no path exists
    if (minFromSource == row * col)
        return -1;
  
    // Return the minimum distance
    return minFromSource;
}
  
// Driver code
int main()
{
    int sourceRow = 3, sourceCol = 3;
    int grid[row][col] = { 1, 1, 1, 0, 0,
                           0, 0, 1, 0, 1,
                           0, 0, 1, 0, 1,
                           1, 0, 0, 0, 1,
                           1, 1, 0, 1, 0 };
  
    cout << minDistance(grid, sourceRow, sourceCol);
  
    return 0;
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 implementation of the approach
  
row = 5
col = 5
  
# Global variables for grid, minDistance and visited array
minDistance = [[0 for i in range(col+1)] for j in range(row+1)]
visited = [[0 for i in range(col+1)]for j in range(row+1)]
  
# Queue for BFS
que = [[0,0]]
  
# Function to find whether the move is valid or not
def isValid(grid,i,j):
    if (i < 0 or j < 0 or j >= col or 
        i >= row or grid[i][j] or visited[i][j]):
        return False
    return True
  
# Function to return the minimum distance
# from source to the end of the grid
def minDistance1(grid,sourceRow,sourceCol):
    # If source is one of the destinations
    if ((sourceCol == 0 and sourceRow == 0) or
        (sourceCol == col - 1 and sourceRow == 0) or
        (sourceCol == 0 or sourceRow == row - 1) or 
        (sourceCol == col - 1 and sourceRow == row - 1)):
        return 0
  
    # Set minimum value
    minFromSource = row * col
  
    # Precalculate minDistance of each grid with R * C
    for i in range(row):
        for j in range(col):
            minDistance[i][j] = row * col
  
    # Insert source position in queue
    que.append([sourceRow, sourceCol])
  
    # Update minimum distance to visit source
    minDistance[sourceRow][sourceCol] = 0
  
    # Set source to visited
    visited[sourceRow][sourceCol] = 1
  
    # BFS approach for calculating the minDistance
    # of each cell from source
    while (len(que)!=0):
        # Iterate over all four cells adjacent
        # to current cell
        cell = que[0]
  
        # Initialize position of current cell
        cellRow = cell[0]
        cellCol = cell[1]
  
        # Cell below the current cell
        if (isValid(grid, cellRow + 1, cellCol)):
            # Push new cell to the queue
            que.append([cellRow + 1, cellCol])
  
            # Update one of its neightbor's distance
            minDistance[cellRow + 1][cellCol] = min(minDistance[cellRow + 1][cellCol], 
                                                minDistance[cellRow][cellCol] + 1)
            visited[cellRow + 1][cellCol] = 1
  
        # Above the current cell
        if (isValid(grid, cellRow - 1, cellCol)):
            que.append([cellRow - 1, cellCol])
            minDistance[cellRow - 1][cellCol] = min(minDistance[cellRow - 1][cellCol], 
                                                    minDistance[cellRow][cellCol] + 1)
            visited[cellRow - 1][cellCol] = 1
  
        # Right cell
        if (isValid(grid, cellRow, cellCol + 1)):
            que.append([cellRow, cellCol + 1])
            minDistance[cellRow][cellCol + 1] = min(minDistance[cellRow][cellCol + 1], 
                                                    minDistance[cellRow][cellCol] + 1)
            visited[cellRow][cellCol + 1] = 1
  
        # Left cell
        if (isValid(grid, cellRow, cellCol - 1)):
            que.append([cellRow, cellCol - 1])
            minDistance[cellRow][cellCol - 1]= min(minDistance[cellRow][cellCol - 1],
                                                minDistance[cellRow][cellCol] + 1)
            visited[cellRow][cellCol - 1] = 1
  
        # Pop the the visited cell
        que.remove(que[0])
  
    # Minimum distance to the corner
    # of the first row, first column
    minFromSource = min(minFromSource, minDistance[0][0])
  
    # Minimum distance to the corner
    # of the last row, first column
    minFromSource = min(minFromSource, minDistance[row - 1][0])
  
    # Minimum distance to the corner
    # of the last row, last column
    minFromSource = min(minFromSource,minDistance[row - 1][col - 1])
  
    # Minimum distance to the corner
    # of the first row, last column
    minFromSource = min(minFromSource, minDistance[0][col - 1])
  
    # If no path exists
    if (minFromSource == row * col):
        return -1
  
    # Return the minimum distance
    return minFromSource
  
# Driver code
if __name__ == '__main__':
    sourceRow = 3
    sourceCol = 3
    grid = [[1, 1, 1, 0, 0],
            [0, 0, 1, 0, 1],
            [0, 0, 1, 0, 1],
            [1, 0, 0, 0, 1],
            [1, 1, 0, 1, 0]]
  
    print(minDistance1(grid, sourceRow, sourceCol))
  
# This code is contributed by
# Surendra_Gangwar

chevron_right


Output:

4


My Personal Notes arrow_drop_up

Discovering ways to develop a plane for soaring career goals

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : SURENDRA_GANGWAR