Given 4 integers A, B, C, and K the task is to find the minimum difference between any multiple of A, B, and C with K
Examples:
Input: A = 5, B = 4, C = 8, K = 9
output: 1
Explanation: Closest multiple of A, B and C greater than 9 is 10. Therefore, minimum difference is 10-9 = 1
Input: A = 6, B = 10, C = 9, K = 2
Output: 4
Explanation: Closest multiple of A, B and C greater than 2 is 6. Therefore, minimum difference is 6-2 = 4
Naive Approach: The task can be solved by using a for-loop to get the next multiples of A, B, and C, by keeping track of the closest multiple just greater than K Follow the below steps to solve the problem:
- Initialize 3 boolean variables say fa, fb, and fc to denote whether the multiples of A, B, and C becomes greater than K
- Start multiplying A, B, and C with cur initialized with 1
- As soon as, one of the three numbers becomes greater than K, store the difference between the nearest multiple and K accordingly
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
void solve( int A, int B, int C, int K)
{
int ans = INT_MAX;
bool fa = false , fb = false , fc = false ;
int cur = 1;
while (1) {
A *= cur;
B *= cur;
C *= cur;
if (fa && fb && fb)
break ;
if (!fa) {
if (A >= K) {
ans = min(ans, A - K);
fa = true ;
}
}
if (!fb) {
if (B >= K) {
ans = min(ans, B - K);
fb = true ;
}
}
if (!fc) {
if (C >= K) {
ans = min(ans, C - K);
fc = true ;
}
}
cur++;
}
cout << ans << endl;
}
int main()
{
int A = 6, B = 10, C = 9, K = 2;
solve(A, B, C, K);
return 0;
}
|
Java
class GFG{
static void solve( int A, int B, int C, int K)
{
int ans = Integer.MAX_VALUE;
boolean fa = false , fb = false , fc = false ;
int cur = 1 ;
while ( true ) {
A *= cur;
B *= cur;
C *= cur;
if (fa && fb && fb)
break ;
if (!fa) {
if (A >= K) {
ans = Math.min(ans, A - K);
fa = true ;
}
}
if (!fb) {
if (B >= K) {
ans = Math.min(ans, B - K);
fb = true ;
}
}
if (!fc) {
if (C >= K) {
ans = Math.min(ans, C - K);
fc = true ;
}
}
cur++;
}
System.out.print(ans + "\n" );
}
public static void main(String[] args)
{
int A = 6 , B = 10 , C = 9 , K = 2 ;
solve(A, B, C, K);
}
}
|
Python3
def solve(A, B, C, K):
ans = 10 * * 9
fa = False
fb = False
fc = False
cur = 1
while ( 1 ):
A * = cur
B * = cur
C * = cur
if (fa and fb and fb):
break
if ( not fa):
if (A > = K):
ans = min (ans, A - K)
fa = True
if ( not fb):
if (B > = K):
ans = min (ans, B - K)
fb = True
if ( not fc):
if (C > = K):
ans = min (ans, C - K)
fc = True
cur + = 1
print (ans)
A = 6
B = 10
C = 9
K = 2
solve(A, B, C, K)
|
C#
using System;
using System.Collections.Generic;
class GFG {
static void solve( int A, int B, int C, int K)
{
int ans = Int32.MaxValue;
bool fa = false , fb = false , fc = false ;
int cur = 1;
while ( true ) {
A *= cur;
B *= cur;
C *= cur;
if (fa && fb && fb)
break ;
if (!fa) {
if (A >= K) {
ans = Math.Min(ans, A - K);
fa = true ;
}
}
if (!fb) {
if (B >= K) {
ans = Math.Min(ans, B - K);
fb = true ;
}
}
if (!fc) {
if (C >= K) {
ans = Math.Min(ans, C - K);
fc = true ;
}
}
cur++;
}
Console.Write(ans + "\n" );
}
public static void Main()
{
int A = 6, B = 10, C = 9, K = 2;
solve(A, B, C, K);
}
}
|
Javascript
<script>
function solve(A, B, C, K) {
let ans = Number.MAX_VALUE;
let fa = false , fb = false , fc = false ;
let cur = 1;
while (1) {
A *= cur;
B *= cur;
C *= cur;
if (fa && fb && fb)
break ;
if (!fa) {
if (A >= K) {
ans = Math.min(ans, A - K);
fa = true ;
}
}
if (!fb) {
if (B >= K) {
ans = Math.min(ans, B - K);
fb = true ;
}
}
if (!fc) {
if (C >= K) {
ans = Math.min(ans, C - K);
fc = true ;
}
}
cur++;
}
document.write(ans + '<br>' );
}
let A = 6, B = 10, C = 9, K = 2;
solve(A, B, C, K);
</script>
|
Time Complexity: O(min(K/A, K/B, K/C))
Auxiliary Space: O(1)
Efficient Approach: Above approach can be generalized into a formula: min(⌈K/A⌉*A, ⌈K/B⌉*B, ⌈K/C⌉*C) − K.
- ⌈K/A⌉*A gives the nearest multiple of A just greater than K
- ⌈K/B⌉*B gives the nearest multiple of B just greater than K
- ⌈K/C⌉*C gives the nearest multiple of C just greater than K
- Difference of minimum of all these with K gives the desired result
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
void solve( int A, int B, int C, int K)
{
int fa, fb, fc;
if ((K % A) != 0) {
fa = ((K / A) + 1) * A;
}
else {
fa = (K / A) * A;
}
if ((K % B) != 0) {
fb = ((K / B) + 1) * B;
}
else {
fb = (K / B) * B;
}
if ((K % C) != 0) {
fc = ((K / C) + 1) * C;
}
else {
fc = (K / C) * C;
}
int ans;
ans = min(fa - K, min(fc - K, fb - K));
cout << ans << endl;
}
int main()
{
int A = 6, B = 10, C = 9, K = 2;
solve(A, B, C, K);
return 0;
}
|
Java
public class GFG {
static void solve( int A, int B, int C, int K)
{
int fa, fb, fc;
if ((K % A) != 0 ) {
fa = ((K / A) + 1 ) * A;
}
else {
fa = (K / A) * A;
}
if ((K % B) != 0 ) {
fb = ((K / B) + 1 ) * B;
}
else {
fb = (K / B) * B;
}
if ((K % C) != 0 ) {
fc = ((K / C) + 1 ) * C;
}
else {
fc = (K / C) * C;
}
int ans;
ans = Math.min(fa - K, Math.min(fc - K, fb - K));
System.out.println(ans);
}
public static void main (String[] args)
{
int A = 6 , B = 10 , C = 9 , K = 2 ;
solve(A, B, C, K);
}
}
|
Python3
def solve( A, B, C, K) :
if ((K % A) ! = 0 ) :
fa = ((K / / A) + 1 ) * A;
else :
fa = (K / / A) * A;
if ((K % B) ! = 0 ) :
fb = ((K / / B) + 1 ) * B;
else :
fb = (K / / B) * B;
if ((K % C) ! = 0 ) :
fc = ((K / / C) + 1 ) * C;
else :
fc = (K / / C) * C;
ans = min (fa - K, min (fc - K, fb - K));
print (ans);
if __name__ = = "__main__" :
A = 6 ; B = 10 ; C = 9 ; K = 2 ;
solve(A, B, C, K);
|
C#
using System;
public class GFG {
static void solve( int A, int B, int C, int K)
{
int fa, fb, fc;
if ((K % A) != 0) {
fa = ((K / A) + 1) * A;
}
else {
fa = (K / A) * A;
}
if ((K % B) != 0) {
fb = ((K / B) + 1) * B;
}
else {
fb = (K / B) * B;
}
if ((K % C) != 0) {
fc = ((K / C) + 1) * C;
}
else {
fc = (K / C) * C;
}
int ans;
ans = Math.Min(fa - K, Math.Min(fc - K, fb - K));
Console.WriteLine(ans);
}
public static void Main( string [] args)
{
int A = 6, B = 10, C = 9, K = 2;
solve(A, B, C, K);
}
}
|
Javascript
<script>
function solve(A , B , C , K)
{
var fa, fb, fc;
if ((K % A) != 0) {
fa = parseInt((K / A) + 1) * A;
}
else {
fa = parseInt(K / A) * A;
}
if ((K % B) != 0) {
fb = parseInt((K / B) + 1) * B;
}
else {
fb = parseInt(K / B) * B;
}
if ((K % C) != 0) {
fc = parseInt((K / C) + 1) * C;
}
else {
fc = parseInt(K / C) * C;
}
var ans;
ans = Math.min(fa - K, Math.min(fc - K, fb - K));
document.write(ans);
}
var A = 6, B = 10, C = 9, K = 2;
solve(A, B, C, K);
</script>
|
Time Complexity: O(1)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!