Given an array that contains both positive and negative integers, find the product of the maximum product subarray. Expected Time complexity is O(n) and only O(1) extra space can be used.
Examples:
Input: arr[] = {6, -3, -10, 0, 2} Output: 180 // The subarray is {6, -3, -10} Input: arr[] = {-1, -3, -10, 0, 60} Output: 60 // The subarray is {60} Input: arr[] = {-2, -40, 0, -2, -3} Output: 80 // The subarray is {-2, -40}
Naive Solution:
The idea is to traverse over every contiguous subarrays, find the product of each of these subarrays and return the maximum product from these results.
Below is the implementation of the above approach.
C++
// C++ program to find Maximum Product Subarray #include <bits/stdc++.h> using namespace std; /* Returns the product of max product subarray.*/ int maxSubarrayProduct( int arr[], int n) { // Initializing result int result = arr[0]; for ( int i = 0; i < n; i++) { int mul = arr[i]; // traversing in current subarray for ( int j = i + 1; j < n; j++) { // updating result every time // to keep an eye over the maximum product result = max(result, mul); mul *= arr[j]; } // updating the result for (n-1)th index. result = max(result, mul); } return result; } // Driver code int main() { int arr[] = { 1, -2, -3, 0, 7, -8, -2 }; int n = sizeof (arr) / sizeof (arr[0]); cout << "Maximum Sub array product is " << maxSubarrayProduct(arr, n); return 0; } // This code is contributed by yashbeersingh42 |
Java
// Java program to find maximum product subarray import java.io.*; class GFG { /* Returns the product of max product subarray.*/ static int maxSubarrayProduct( int arr[]) { // Initializing result int result = arr[ 0 ]; int n = arr.length; for ( int i = 0 ; i < n; i++) { int mul = arr[i]; // traversing in current subarray for ( int j = i + 1 ; j < n; j++) { // updating result every time // to keep an eye over the // maximum product result = Math.max(result, mul); mul *= arr[j]; } // updating the result for (n-1)th index. result = Math.max(result, mul); } return result; } // Driver Code public static void main(String[] args) { int arr[] = { 1 , - 2 , - 3 , 0 , 7 , - 8 , - 2 }; System.out.println( "Maximum Sub array product is " + maxSubarrayProduct(arr)); } } // This code is contributed by yashbeersingh42 |
Python3
# Python3 program to find Maximum Product Subarray # Returns the product of max product subarray. def maxSubarrayProduct(arr, n): # Initializing result result = arr[ 0 ] for i in range (n): mul = arr[i] # traversing in current subarray for j in range (i + 1 , n): # updating result every time # to keep an eye over the maximum product result = max (result, mul) mul * = arr[j] # updating the result for (n-1)th index. result = max (result, mul) return result # Driver code arr = [ 1 , - 2 , - 3 , 0 , 7 , - 8 , - 2 ] n = len (arr) print ( "Maximum Sub array product is" , maxSubarrayProduct(arr, n)) # This code is contributed by divyeshrabadiya07 |
C#
// C# program to find maximum product subarray using System; class GFG{ // Returns the product of max product subarray static int maxSubarrayProduct( int []arr) { // Initializing result int result = arr[0]; int n = arr.Length; for ( int i = 0; i < n; i++) { int mul = arr[i]; // Traversing in current subarray for ( int j = i + 1; j < n; j++) { // Updating result every time // to keep an eye over the // maximum product result = Math.Max(result, mul); mul *= arr[j]; } // Updating the result for (n-1)th index result = Math.Max(result, mul); } return result; } // Driver Code public static void Main(String[] args) { int []arr = { 1, -2, -3, 0, 7, -8, -2 }; Console.Write( "Maximum Sub array product is " + maxSubarrayProduct(arr)); } } // This code is contributed by shivanisinghss2110 |
Javascript
<script> // Javascript program to find Maximum Product Subarray /* Returns the product of max product subarray.*/ function maxSubarrayProduct(arr, n) { // Initializing result let result = arr[0]; for (let i = 0; i < n; i++) { let mul = arr[i]; // traversing in current subarray for (let j = i + 1; j < n; j++) { // updating result every time // to keep an eye over the maximum product result = Math.max(result, mul); mul *= arr[j]; } // updating the result for (n-1)th index. result = Math.max(result, mul); } return result; } // Driver code let arr = [ 1, -2, -3, 0, 7, -8, -2 ]; let n = arr.length; document.write( "Maximum Sub array product is " + maxSubarrayProduct(arr, n)); // This code is contributed by Mayank Tyagi </script> |
Output:
Maximum Sub array product is 112
Time Complexity: O(N2)
Auxiliary Space: O(1)
Efficient Solution:
The following solution assumes that the given input array always has a positive output. The solution works for all cases mentioned above. It doesn’t work for arrays like {0, 0, -20, 0}, {0, 0, 0}.. etc. The solution can be easily modified to handle this case.
It is similar to Largest Sum Contiguous Subarray problem. The only thing to note here is, maximum product can also be obtained by minimum (negative) product ending with the previous element multiplied by this element. For example, in array {12, 2, -3, -5, -6, -2}, when we are at element -2, the maximum product is multiplication of, minimum product ending with -6 and -2.
C++
// C++ program to find Maximum Product Subarray #include <bits/stdc++.h> using namespace std; /* Returns the product of max product subarray. Assumes that the given array always has a subarray with product more than 1 */ int maxSubarrayProduct( int arr[], int n) { // max positive product // ending at the current position int max_ending_here = 1; // min negative product ending // at the current position int min_ending_here = 1; // Initialize overall max product int max_so_far = 0; int flag = 0; /* Traverse through the array. Following values are maintained after the i'th iteration: max_ending_here is always 1 or some positive product ending with arr[i] min_ending_here is always 1 or some negative product ending with arr[i] */ for ( int i = 0; i < n; i++) { /* If this element is positive, update max_ending_here. Update min_ending_here only if min_ending_here is negative */ if (arr[i] > 0) { max_ending_here = max_ending_here * arr[i]; min_ending_here = min(min_ending_here * arr[i], 1); flag = 1; } /* If this element is 0, then the maximum product cannot end here, make both max_ending_here and min_ending_here 0 Assumption: Output is alway greater than or equal to 1. */ else if (arr[i] == 0) { max_ending_here = 1; min_ending_here = 1; } /* If element is negative. This is tricky max_ending_here can either be 1 or positive. min_ending_here can either be 1 or negative. next max_ending_here will always be prev. min_ending_here * arr[i] ,next min_ending_here will be 1 if prev max_ending_here is 1, otherwise next min_ending_here will be prev max_ending_here * arr[i] */ else { int temp = max_ending_here; max_ending_here = max(min_ending_here * arr[i], 1); min_ending_here = temp * arr[i]; } // update max_so_far, if needed if (max_so_far < max_ending_here) max_so_far = max_ending_here; } if (flag == 0 && max_so_far == 0) return 0; return max_so_far; } // Driver code int main() { int arr[] = { 1, -2, -3, 0, 7, -8, -2 }; int n = sizeof (arr) / sizeof (arr[0]); cout << "Maximum Sub array product is " << maxSubarrayProduct(arr, n); return 0; } // This is code is contributed by rathbhupendra |
C
// C program to find Maximum Product Subarray #include <stdio.h> // Utility functions to get minimum of two integers int min( int x, int y) { return x < y ? x : y; } // Utility functions to get maximum of two integers int max( int x, int y) { return x > y ? x : y; } /* Returns the product of max product subarray. Assumes that the given array always has a subarray with product more than 1 */ int maxSubarrayProduct( int arr[], int n) { // max positive product // ending at the current position int max_ending_here = 1; // min negative product ending // at the current position int min_ending_here = 1; // Initialize overall max product int max_so_far = 0; int flag = 0; /* Traverse through the array. Following values are maintained after the i'th iteration: max_ending_here is always 1 or some positive product ending with arr[i] min_ending_here is always 1 or some negative product ending with arr[i] */ for ( int i = 0; i < n; i++) { /* If this element is positive, update max_ending_here. Update min_ending_here only if min_ending_here is negative */ if (arr[i] > 0) { max_ending_here = max_ending_here * arr[i]; min_ending_here = min(min_ending_here * arr[i], 1); flag = 1; } /* If this element is 0, then the maximum product cannot end here, make both max_ending_here and min_ending_here 0 Assumption: Output is alway greater than or equal to 1. */ else if (arr[i] == 0) { max_ending_here = 1; min_ending_here = 1; } /* If element is negative. This is tricky max_ending_here can either be 1 or positive. min_ending_here can either be 1 or negative. next min_ending_here will always be prev. max_ending_here * arr[i] next max_ending_here will be 1 if prev min_ending_here is 1, otherwise next max_ending_here will be prev min_ending_here * arr[i] */ else { int temp = max_ending_here; max_ending_here = max(min_ending_here * arr[i], 1); min_ending_here = temp * arr[i]; } // update max_so_far, if needed if (max_so_far < max_ending_here) max_so_far = max_ending_here; } if (flag == 0 && max_so_far == 0) return 0; return max_so_far; return max_so_far; } // Driver code int main() { int arr[] = { 1, -2, -3, 0, 7, -8, -2 }; int n = sizeof (arr) / sizeof (arr[0]); printf ( "Maximum Sub array product is %d" , maxSubarrayProduct(arr, n)); return 0; } |
Java
// Java program to find maximum product subarray import java.io.*; class ProductSubarray { // Utility functions to get // minimum of two integers static int min( int x, int y) { return x < y ? x : y; } // Utility functions to get // maximum of two integers static int max( int x, int y) { return x > y ? x : y; } /* Returns the product of max product subarray. Assumes that the given array always has a subarray with product more than 1 */ static int maxSubarrayProduct( int arr[]) { int n = arr.length; // max positive product // ending at the current // position int max_ending_here = 1 ; // min negative product // ending at the current // position int min_ending_here = 1 ; // Initialize overall max product int max_so_far = 0 ; int flag = 0 ; /* Traverse through the array. Following values are maintained after the ith iteration: max_ending_here is always 1 or some positive product ending with arr[i] min_ending_here is always 1 or some negative product ending with arr[i] */ for ( int i = 0 ; i < n; i++) { /* If this element is positive, update max_ending_here. Update min_ending_here only if min_ending_here is negative */ if (arr[i] > 0 ) { max_ending_here = max_ending_here * arr[i]; min_ending_here = min(min_ending_here * arr[i], 1 ); flag = 1 ; } /* If this element is 0, then the maximum product cannot end here, make both max_ending_here and min_ending _here 0 Assumption: Output is alway greater than or equal to 1. */ else if (arr[i] == 0 ) { max_ending_here = 1 ; min_ending_here = 1 ; } /* If element is negative. This is tricky max_ending_here can either be 1 or positive. min_ending_here can either be 1 or negative. next min_ending_here will always be prev. max_ending_here * arr[i] next max_ending_here will be 1 if prev min_ending_here is 1, otherwise next max_ending_here will be prev min_ending_here * arr[i] */ else { int temp = max_ending_here; max_ending_here = max(min_ending_here * arr[i], 1 ); min_ending_here = temp * arr[i]; } // update max_so_far, if needed if (max_so_far < max_ending_here) max_so_far = max_ending_here; } if (flag == 0 && max_so_far == 0 ) return 0 ; return max_so_far; } // Driver Code public static void main(String[] args) { int arr[] = { 1 , - 2 , - 3 , 0 , 7 , - 8 , - 2 }; System.out.println( "Maximum Sub array product is " + maxSubarrayProduct(arr)); } } /*This code is contributed by Devesh Agrawal*/ |
Python
# Python program to find maximum product subarray # Returns the product of max product subarray. # Assumes that the given array always has a subarray # with product more than 1 def maxsubarrayproduct(arr): n = len (arr) # max positive product ending at the current position max_ending_here = 1 # min positive product ending at the current position min_ending_here = 1 # Initialize maximum so far max_so_far = 0 flag = 0 # Traverse throughout the array. Following values # are maintained after the ith iteration: # max_ending_here is always 1 or some positive product # ending with arr[i] # min_ending_here is always 1 or some negative product # ending with arr[i] for i in range ( 0 , n): # If this element is positive, update max_ending_here. # Update min_ending_here only if min_ending_here is # negative if arr[i] > 0 : max_ending_here = max_ending_here * arr[i] min_ending_here = min (min_ending_here * arr[i], 1 ) flag = 1 # If this element is 0, then the maximum product cannot # end here, make both max_ending_here and min_ending_here 0 # Assumption: Output is alway greater than or equal to 1. elif arr[i] = = 0 : max_ending_here = 1 min_ending_here = 1 # If element is negative. This is tricky # max_ending_here can either be 1 or positive. # min_ending_here can either be 1 or negative. # next min_ending_here will always be prev. # max_ending_here * arr[i] # next max_ending_here will be 1 if prev # min_ending_here is 1, otherwise # next max_ending_here will be prev min_ending_here * arr[i] else : temp = max_ending_here max_ending_here = max (min_ending_here * arr[i], 1 ) min_ending_here = temp * arr[i] if (max_so_far < max_ending_here): max_so_far = max_ending_here if flag = = 0 and max_so_far = = 0 : return 0 return max_so_far # Driver function to test above function arr = [ 1 , - 2 , - 3 , 0 , 7 , - 8 , - 2 ] print "Maximum product subarray is" , maxsubarrayproduct(arr) # This code is contributed by Devesh Agrawal |
C#
// C# program to find maximum product subarray using System; class GFG { // Utility functions to get minimum of two integers static int min( int x, int y) { return x < y ? x : y; } // Utility functions to get maximum of two integers static int max( int x, int y) { return x > y ? x : y; } /* Returns the product of max product subarray. Assumes that the given array always has a subarray with product more than 1 */ static int maxSubarrayProduct( int [] arr) { int n = arr.Length; // max positive product ending at the current // position int max_ending_here = 1; // min negative product ending at the current // position int min_ending_here = 1; // Initialize overall max product int max_so_far = 0; int flag = 0; /* Traverse through the array. Following values are maintained after the ith iteration: max_ending_here is always 1 or some positive product ending with arr[i] min_ending_here is always 1 or some negative product ending with arr[i] */ for ( int i = 0; i < n; i++) { /* If this element is positive, update max_ending_here. Update min_ending_here only if min_ending_here is negative */ if (arr[i] > 0) { max_ending_here = max_ending_here * arr[i]; min_ending_here = min(min_ending_here * arr[i], 1); flag = 1; } /* If this element is 0, then the maximum product cannot end here, make both max_ending_here and min_ending_here 0 Assumption: Output is alway greater than or equal to 1. */ else if (arr[i] == 0) { max_ending_here = 1; min_ending_here = 1; } /* If element is negative. This is tricky max_ending_here can either be 1 or positive. min_ending_here can either be 1 or negative. next min_ending_here will always be prev. max_ending_here * arr[i] next max_ending_here will be 1 if prev min_ending_here is 1, otherwise next max_ending_here will be prev min_ending_here * arr[i] */ else { int temp = max_ending_here; max_ending_here = max(min_ending_here * arr[i], 1); min_ending_here = temp * arr[i]; } // update max_so_far, if needed if (max_so_far < max_ending_here) max_so_far = max_ending_here; } if (flag == 0 && max_so_far == 0) return 0; return max_so_far; } // Driver Code public static void Main() { int [] arr = { 1, -2, -3, 0, 7, -8, -2 }; Console.WriteLine( "Maximum Sub array product is " + maxSubarrayProduct(arr)); } } /*This code is contributed by vt_m*/ |
PHP
<?php // php program to find Maximum Product // Subarray // Utility functions to get minimum of // two integers function minn ( $x , $y ) { return $x < $y ? $x : $y ; } // Utility functions to get maximum of // two integers function maxx ( $x , $y ) { return $x > $y ? $x : $y ; } /* Returns the product of max product subarray. Assumes that the given array always has a subarray with product more than 1 */ function maxSubarrayProduct( $arr , $n ) { // max positive product ending at // the current position $max_ending_here = 1; // min negative product ending at // the current position $min_ending_here = 1; // Initialize overall max product $max_so_far = 0; $flag = 0; /* Traverse through the array. Following values are maintained after the i'th iteration: max_ending_here is always 1 or some positive product ending with arr[i] min_ending_here is always 1 or some negative product ending with arr[i] */ for ( $i = 0; $i < $n ; $i ++) { /* If this element is positive, update max_ending_here. Update min_ending_here only if min_ending_here is negative */ if ( $arr [ $i ] > 0) { $max_ending_here = $max_ending_here * $arr [ $i ]; $min_ending_here = min ( $min_ending_here * $arr [ $i ], 1); $flag = 1; } /* If this element is 0, then the maximum product cannot end here, make both max_ending_here and min_ending_here 0 Assumption: Output is alway greater than or equal to 1. */ else if ( $arr [ $i ] == 0) { $max_ending_here = 1; $min_ending_here = 1; } /* If element is negative. This is tricky max_ending_here can either be 1 or positive. min_ending_here can either be 1 or negative. next min_ending_here will always be prev. max_ending_here * arr[i] next max_ending_here will be 1 if prev min_ending_here is 1, otherwise next max_ending_here will be prev min_ending_here * arr[i] */ else { $temp = $max_ending_here ; $max_ending_here = max ( $min_ending_here * $arr [ $i ], 1); $min_ending_here = $temp * $arr [ $i ]; } // update max_so_far, if needed if ( $max_so_far < $max_ending_here ) $max_so_far = $max_ending_here ; } if ( $flag ==0 && $max_so_far ==0) return 0; return $max_so_far ; } // Driver Program to test above function $arr = array (1, -2, -3, 0, 7, -8, -2); $n = sizeof( $arr ) / sizeof( $arr [0]); echo ( "Maximum Sub array product is " ); echo (maxSubarrayProduct( $arr , $n )); // This code is contributed by nitin mittal ?> |
Javascript
<script> // JavaScript program to find // Maximum Product Subarray /* Returns the product of max product subarray. Assumes that the given array always has a subarray with product more than 1 */ function maxSubarrayProduct(arr, n) { // max positive product // ending at the current position let max_ending_here = 1; // min negative product ending // at the current position let min_ending_here = 1; // Initialize overall max product let max_so_far = 0; let flag = 0; /* Traverse through the array. Following values are maintained after the i'th iteration: max_ending_here is always 1 or some positive product ending with arr[i] min_ending_here is always 1 or some negative product ending with arr[i] */ for (let i = 0; i < n; i++) { /* If this element is positive, update max_ending_here. Update min_ending_here only if min_ending_here is negative */ if (arr[i] > 0) { max_ending_here = max_ending_here * arr[i]; min_ending_here = Math.min(min_ending_here * arr[i], 1); flag = 1; } /* If this element is 0, then the maximum product cannot end here, make both max_ending_here and min_ending_here 0 Assumption: Output is alway greater than or equal to 1. */ else if (arr[i] == 0) { max_ending_here = 1; min_ending_here = 1; } /* If element is negative. This is tricky max_ending_here can either be 1 or positive. min_ending_here can either be 1 or negative. next max_ending_here will always be prev. min_ending_here * arr[i] ,next min_ending_here will be 1 if prev max_ending_here is 1, otherwise next min_ending_here will be prev max_ending_here * arr[i] */ else { let temp = max_ending_here; max_ending_here = Math.max(min_ending_here * arr[i], 1); min_ending_here = temp * arr[i]; } // update max_so_far, if needed if (max_so_far < max_ending_here) max_so_far = max_ending_here; } if (flag == 0 && max_so_far == 0) return 0; return max_so_far; } // Driver program let arr = [ 1, -2, -3, 0, 7, -8, -2 ]; let n = arr.length; document.write( "Maximum Sub array product is " + maxSubarrayProduct(arr,n)); </script> |
Maximum Sub array product is 112
Time Complexity: O(n)
Auxiliary Space: O(1)
This article is compiled by Dheeraj Jain and reviewed by GeeksforGeeks team. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.