Given an array arr[] consisting of values of N vertices of an initially unconnected Graph and an integer M, the task is to connect some vertices of the graph with exactly M edges, forming only one connected component, such that no cycle can be formed and Bitwise AND of the connected vertices is maximum possible.
Examples:
Input: arr[] = {1, 2, 3, 4}, M = 2
Output: 0
Explanation:
Following arrangement of M edges between the given vertices are:
1->2->3 (1 & 2 & 3 = 0).
2->3->4 (2 & 3 & 4 = 0).
3->4->1 (3 & 4 & 1 = 0).
1->2->4 (1 & 2 & 4 = 0).
Therefore, the maximum Bitwise AND value among all the cases is 0.
Input: arr[] = {4, 5, 6}, M = 2
Output: 4
Explanation:
Only possible way to add M edges is 4 -> 5 -> 6 (4 & 5 & 6 = 4).
Therefore, the maximum Bitwise AND value possible is 4.
Approach: The idea to solve the given problem is to generate all possible combinations of connecting vertices using M edges and print the maximum Bitwise AND among all possible combinations.
The total number of ways for connecting N vertices is 2N and there should be (M + 1) vertices to make only one connected component. Follow the steps to solve the given problem:
- Initialize two variables, say AND and ans as 0 to store the maximum Bitwise AND, and Bitwise AND of nodes of any possible connected component respectively.
- Iterate over the range [1, 2N] using a variable, say i, and perform the following steps:
- If i has (M + 1) set bits, then find the Bitwise AND of the position of set bits and store it in the variable, say ans.
- If the value of AND exceeds ans, then update the value of AND as ans.
- After completing the above steps, print the value of AND as the resultant maximum Bitwise AND.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int maximumAND( int arr[], int n, int m)
{
int tot = 1 << n;
int mx = 0;
for ( int bm = 0; bm < tot; bm++) {
int andans = 0;
int count = 0;
for ( int i = 0; i < n; ++i) {
if ((bm >> i) & 1) {
if (count == 0) {
andans = arr[i];
}
else {
andans = andans & arr[i];
}
count++;
}
}
if (count == (m + 1)) {
mx = max(mx, andans);
}
}
return mx;
}
int main()
{
int arr[] = { 1, 2, 3, 4 };
int N = sizeof (arr) / sizeof (arr[0]);
int M = 2;
cout << maximumAND(arr, N, M);
return 0;
}
|
Java
import java.util.*;
class GFG{
static int maximumAND( int arr[], int n, int m)
{
int tot = 1 << n;
int mx = 0 ;
for ( int bm = 0 ; bm < tot; bm++)
{
int andans = 0 ;
int count = 0 ;
for ( int i = 0 ; i < n; ++i)
{
if (((bm >> i) & 1 ) != 0 )
{
if (count == 0 )
{
andans = arr[i];
}
else
{
andans = andans & arr[i];
}
count++;
}
}
if (count == (m + 1 ))
{
mx = Math.max(mx, andans);
}
}
return mx;
}
public static void main(String args[])
{
int arr[] = { 1 , 2 , 3 , 4 };
int N = arr.length;
int M = 2 ;
System.out.println(maximumAND(arr, N, M));
}
}
|
Python3
def maximumAND(arr, n, m):
tot = 1 << n
mx = 0
for bm in range (tot):
andans = 0
count = 0
for i in range (n):
if ((bm >> i) & 1 ):
if (count = = 0 ):
andans = arr[i]
else :
andans = andans & arr[i]
count + = 1
if (count = = (m + 1 )):
mx = max (mx, andans)
return mx
if __name__ = = '__main__' :
arr = [ 1 , 2 , 3 , 4 ]
N = len (arr)
M = 2
print (maximumAND(arr, N, M))
|
C#
using System;
class GFG{
static int maximumAND( int [] arr, int n, int m)
{
int tot = 1 << n;
int mx = 0;
for ( int bm = 0; bm < tot; bm++)
{
int andans = 0;
int count = 0;
for ( int i = 0; i < n; ++i)
{
if (((bm >> i) & 1) != 0 )
{
if (count == 0)
{
andans = arr[i];
}
else
{
andans = andans & arr[i];
}
count++;
}
}
if (count == (m + 1))
{
mx = Math.Max(mx, andans);
}
}
return mx;
}
static public void Main ()
{
int [] arr = { 1, 2, 3, 4 };
int N = arr.Length;
int M = 2;
Console.WriteLine(maximumAND(arr, N, M));
}
}
|
Javascript
<script>
function maximumAND(arr, n, m)
{
let tot = 1 << n;
let mx = 0;
for (let bm = 0; bm < tot; bm++)
{
let andans = 0;
let count = 0;
for (let i = 0; i < n; ++i)
{
if (((bm >> i) & 1) != 0)
{
if (count == 0)
{
andans = arr[i];
}
else
{
andans = andans & arr[i];
}
count++;
}
}
if (count == (m + 1))
{
mx = Math.max(mx, andans);
}
}
return mx;
}
let arr = [ 1, 2, 3, 4 ];
let N = arr.length;
let M = 2;
document.write(maximumAND(arr, N, M));
</script>
|
Time Complexity: O((2N)*N)
Auxiliary Space: O(N)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!