Maximum non-attacking Knights that can be placed on an N*M Chessboard
Given an N*M chessboard. The task is to find the maximum number of knights that can be placed on the given chessboard such that no knight attack some other knight.
Example
Input: N = 1, M = 4
Output: 4
Place a knight on every cell of the chessboard.Input: N = 4, M = 5
Output: 10
Approach: As we know that a knight can attack in two ways. Here are the places which he can attack.
Here, in the picture, the knight is on white color and attacks only the black color. Thus. we concluded that a knight can attack only on a different color.
We can take help of this fact and use it for our purpose. Now as we know knight attacks on different color so we can keep all knights on the same color i.e. all on white or all on black. Thus making the highest number of knights which can be placed.
To find the number of black or white, it is simply half of the total blocks on board.
Total Blocks = n * m
Blocks of the same color = (n * m) / 2
Corner cases:
- If there is only a single row or column. Then all the blocks can be filled by knights as a knight cannot attack in the same row or column.
- If there are only two rows or columns. Then every two columns (or rows) will be filled with knights and every consecutive two columns (or rows) will remain empty. As demonstrated in the picture.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the maximum number of // knights that can be placed on the given // chessboard such that no two // knights attack each other int max_knight( int n, int m) { // Check for corner case #1 // If row or column is 1 if (m == 1 || n == 1) { // If yes, then simply print total blocks // which will be the max of row or column return max(m, n); } // Check for corner case #2 // If row or column is 2 else if (m == 2 || n == 2) { // If yes, then simply calculate // consecutive 2 rows or columns int c = 0; c = (max(m, n) / 4) * 4; if (max(m, n) % 4 == 1) { c += 2; } else if (max(m, n) % 4 > 1) { c += 4; } return c; } // For general case, just print the // half of total blocks else { return (((m * n) + 1) / 2); } } // Driver code int main() { int n = 4, m = 5; cout << max_knight(n, m); return 0; } |
Java
// Java implementation of the approach import java.io.*; class GFG { // Function to return the maximum number of // knights that can be placed on the given // chessboard such that no two // knights attack each other static int max_knight( int n, int m) { // Check for corner case #1 // If row or column is 1 if (m == 1 || n == 1 ) { // If yes, then simply print total blocks // which will be the max of row or column return Math.max(m, n); } // Check for corner case #2 // If row or column is 2 else if (m == 2 || n == 2 ) { // If yes, then simply calculate // consecutive 2 rows or columns int c = 0 ; c = (Math.max(m, n) / 4 ) * 4 ; if (Math.max(m, n) % 4 == 1 ) { c += 2 ; } else if (Math.max(m, n) % 4 > 1 ) { c += 4 ; } return c; } // For general case, just print the // half of total blocks else { return (((m * n) + 1 ) / 2 ); } } // Driver code public static void main (String[] args) { int n = 4 , m = 5 ; System.out.println (max_knight(n, m)); } } // This code is contributed by ajit |
Python3
# Python3 implementation of the approach # Function to return the maximum number of # knights that can be placed on the given # chessboard such that no two # knights attack each other def max_knight(n, m) : # Check for corner case #1 # If row or column is 1 if (m = = 1 or n = = 1 ) : # If yes, then simply print total blocks # which will be the max of row or column return max (m, n); # Check for corner case #2 # If row or column is 2 elif (m = = 2 or n = = 2 ) : # If yes, then simply calculate # consecutive 2 rows or columns c = 0 ; c = ( max (m, n) / / 4 ) * 4 ; if ( max (m, n) % 4 = = 1 ) : c + = 2 ; elif ( max (m, n) % 4 > 1 ) : c + = 4 ; return c; # For general case, just print the # half of total blocks else : return (((m * n) + 1 ) / / 2 ); # Driver code if __name__ = = "__main__" : n = 4 ; m = 5 ; print (max_knight(n, m)); # This code is contributed by AnkitRai01 |
C#
// C# implementation of the approach using System; class GFG { // Function to return the maximum number of // knights that can be placed on the given // chessboard such that no two // knights attack each other static int max_knight( int n, int m) { // Check for corner case #1 // If row or column is 1 if (m == 1 || n == 1) { // If yes, then simply print total blocks // which will be the max of row or column return Math.Max(m, n); } // Check for corner case #2 // If row or column is 2 else if (m == 2 || n == 2) { // If yes, then simply calculate // consecutive 2 rows or columns int c = 0; c = (Math.Max(m, n) / 4) * 4; if (Math.Max(m, n) % 4 == 1) { c += 2; } else if (Math.Max(m, n) % 4 > 1) { c += 4; } return c; } // For general case, just print the // half of total blocks else { return (((m * n) + 1) / 2); } } // Driver code static public void Main () { int n = 4, m = 5; Console.Write(max_knight(n, m)); } } // This code is contributed by Tushil. |
10
Please Login to comment...