Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Maximize number of circular buildings that can be covered by L length wire

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given an array arr[] of size N, representing the diameter of N circular buildings and a straight wire of length L. The task is to find the maximum number of continuous buildings the wire can cover if it is round it once around the building.

Note: Distance between each building is 1 unit length, so it takes 1 unit length extra to reach one build to the next building.

Examples:

Input: arr[] = {4, 1, 6}, L = 24
Output: 2
Explanation: 1 round of building will require  pi * d length of wire, where pi is 3.14159 and d is the diameter of circle.
For 1st building → 12.566 length of wire required, remaining wire→ 24-12.566=11.434 -1( to reach next building)=10.434
Similarly, for second building 3.141 length of wire required, remaining wire→ 10.434-3.141= 7.292 -1= 6.292 
For third building 18.849, which is > remaining wire i.e, 18.849>6.292
Therefore, Maximum of 2 building can be covered.

Input: arr[] = {2, 5, 3, 4}, L = 36
Output: 3

 

Approach: The idea is to use the greedy approach. Follow the steps below to solve the problem:

  • Initialize variables curr_sum, start, curr_count, max_count to calculate the current sum of elements, current count, starting index of the current subarray, and maximum count of covered buildings.
  • Traverse the array for i in range [0, N – 1],
    • Update current sum of wire length required, curr_sum += arr[i] * 3.14
    • If i is greater than 0, Increment curr_sum by 1.
    • If curr_sum ≤ L. Increment curr_count by 1
    • Otherwise, exclude arr[start] from the current group
      • Update curr_sum = curr_sum – ((double)arr[start] * 3.14)
      • Decrement curr_sum by 1
      • Increment start pointer by 1
      • Decrement curr_count by 1
  • Update max_count i.e, max_count = max(curr_count, max_count).
  • After completing the above steps, print the value of max_count as the result.

Below is the implementation of the above approach.

C++14




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
const double Pi = 3.141592;
 
// Function to find the maximum
// number of buildings covered
int MaxBuildingsCovered(int arr[], int N, int L)
{
    // Store the current sum
    double curr_sum = 0;
 
    int start = 0, curr_count = 0, max_count = 0;
 
    // Traverse the array
    for (int i = 0; i < N; i++) {
 
        // Add the length of wire required for
        // current building to cur_sum
        curr_sum = curr_sum + ((double)arr[i] * Pi);
 
        // Add extra unit distance 1
        if (i != 0)
            curr_sum += 1;
 
        // If curr_sum <= length of wire
        // increment count by 1
        if (curr_sum <= L) {
            curr_count++;
        }
 
        // If curr_sum > length of wire
        // increment start by 1 and
        // decrement count by 1 and
        // update the new curr_sum
        else if (curr_sum > L) {
            curr_sum = curr_sum - ((double)arr[start] * Pi);
            curr_sum -= 1;
            start++;
            curr_count--;
        }
 
        // Update the max_count
        max_count = max(curr_count, max_count);
    }
 
    // Return the max_count
    return max_count;
}
 
// Driver Code
int main()
{
    // Given Input
    int arr[] = { 4, 1, 6, 2 };
    int L = 24;
 
    // Size of the array
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    cout << MaxBuildingsCovered(arr, N, L);
 
    return 0;
}

Java




// Java program for the above approach
import java.io.*;
 
class GFG{
 
static final double Pi = 3.141592;
 
// Function to find the maximum
// number of buildings covered
static int MaxBuildingsCovered(int arr[], int N,
                               int L)
{
     
    // Store the current sum
    double curr_sum = 0;
 
    int start = 0, curr_count = 0, max_count = 0;
 
    // Traverse the array
    for(int i = 0; i < N; i++)
    {
         
        // Add the length of wire required for
        // current building to cur_sum
        curr_sum = curr_sum + ((double)arr[i] * Pi);
 
        // Add extra unit distance 1
        if (i != 0)
            curr_sum += 1;
 
        // If curr_sum <= length of wire
        // increment count by 1
        if (curr_sum <= L)
        {
            curr_count++;
        }
 
        // If curr_sum > length of wire
        // increment start by 1 and
        // decrement count by 1 and
        // update the new curr_sum
        else if (curr_sum > L)
        {
            curr_sum = curr_sum - ((double)arr[start] * Pi);
            curr_sum -= 1;
            start++;
            curr_count--;
        }
 
        // Update the max_count
        max_count = Math.max(curr_count, max_count);
    }
 
    // Return the max_count
    return max_count;
}
 
// Driver Code
public static void main (String[] args)
{
     
    // Given Input
    int arr[] = { 4, 1, 6, 2 };
    int L = 24;
 
    // Size of the array
    int N = arr.length;
 
    // Function Call
    System.out.println(MaxBuildingsCovered(arr, N, L));
}
}
 
// This code is contributed by Dharanendra L V.

Python3




# Python3 program for the above approach
Pi = 3.141592
 
# Function to find the maximum
# number of buildings covered
def MaxBuildingsCovered(arr, N,  L):
    # Store the current sum
    curr_sum = 0
 
    start = 0
    curr_count = 0
    max_count = 0
 
    # Traverse the array
    for i in range(N):
        # Add the length of wire required for
        # current building to cur_sum
        curr_sum = curr_sum + (arr[i] * Pi)
 
        # Add extra unit distance 1
        if (i != 0):
            curr_sum += 1
 
        # If curr_sum <= length of wire
        # increment count by 1
        if (curr_sum <= L):
            curr_count += 1
 
        # If curr_sum > length of wire
        # increment start by 1 and
        # decrement count by 1 and
        # update the new curr_sum
        elif(curr_sum > L):
            curr_sum = curr_sum - (arr[start] * Pi)
            curr_sum -= 1
            start += 1
            curr_count -= 1
 
        # Update the max_count
        max_count = max(curr_count, max_count)
 
    # Return the max_count
    return max_count
 
# Driver Code
if __name__ == '__main__':
    # Given Input
    arr = [4, 1, 6, 2]
    L = 24
 
    # Size of the array
    N = len(arr)
 
    # Function Call
    print(MaxBuildingsCovered(arr, N, L))
     
    # This code is contributed by SURENDRA_GANGWAR.

C#




// C# program for the above approach
using System;
 
class GFG{
 
static double Pi = 3.141592;
 
// Function to find the maximum
// number of buildings covered
static int MaxBuildingsCovered(int[] arr, int N,
                               int L)
{
     
    // Store the current sum
    double curr_sum = 0;
 
    int start = 0, curr_count = 0, max_count = 0;
 
    // Traverse the array
    for(int i = 0; i < N; i++)
    {
         
        // Add the length of wire required for
        // current building to cur_sum
        curr_sum = curr_sum + ((double)arr[i] * Pi);
 
        // Add extra unit distance 1
        if (i != 0)
            curr_sum += 1;
 
        // If curr_sum <= length of wire
        // increment count by 1
        if (curr_sum <= L)
        {
            curr_count++;
        }
 
        // If curr_sum > length of wire
        // increment start by 1 and
        // decrement count by 1 and
        // update the new curr_sum
        else if (curr_sum > L)
        {
            curr_sum = curr_sum - ((double)arr[start] * Pi);
            curr_sum -= 1;
            start++;
            curr_count--;
        }
 
        // Update the max_count
        max_count = Math.Max(curr_count, max_count);
    }
 
    // Return the max_count
    return max_count;
}
 
// Driver code
static void Main()
{
     
    // Given Input
    int[] arr = { 4, 1, 6, 2 };
    int L = 24;
 
    // Size of the array
    int N = arr.Length;
 
    // Function Call
    Console.Write(MaxBuildingsCovered(arr, N, L));
}
}
 
// This code is contributed by code_hunt

Javascript




<script>
      // JavaScript program for the above approach
      var Pi = 3.141592;
 
      // Function to find the maximum
      // number of buildings covered
      function MaxBuildingsCovered(arr, N, L) {
        // Store the current sum
        var curr_sum = 0;
 
        var start = 0,
          curr_count = 0,
          max_count = 0;
 
        // Traverse the array
        for (var i = 0; i < N; i++) {
          // Add the length of wire required for
          // current building to cur_sum
          curr_sum = curr_sum + parseFloat(arr[i]) * Pi;
 
          // Add extra unit distance 1
          if (i != 0) curr_sum += 1;
 
          // If curr_sum <= length of wire
          // increment count by 1
          if (curr_sum <= L) {
            curr_count++;
          }
 
          // If curr_sum > length of wire
          // increment start by 1 and
          // decrement count by 1 and
          // update the new curr_sum
          else if (curr_sum > L) {
            curr_sum = curr_sum - parseFloat(arr[start]) * Pi;
            curr_sum -= 1;
            start++;
            curr_count--;
          }
 
          // Update the max_count
          max_count = Math.max(curr_count, max_count);
        }
 
        // Return the max_count
        return max_count;
      }
 
      // Driver code
      // Given Input
      var arr = [4, 1, 6, 2];
      var L = 24;
 
      // Size of the array
      var N = arr.length;
 
      // Function Call
      document.write(MaxBuildingsCovered(arr, N, L));
       
      // This code is contributed by rdtank.
    </script>

Output

2

Time Complexity: O(N)
Auxiliary Space: O(1)

 


My Personal Notes arrow_drop_up
Last Updated : 30 Jun, 2021
Like Article
Save Article
Similar Reads
Related Tutorials