Maximize number of circular buildings that can be covered by L length wire
Given an array arr[] of size N, representing the diameter of N circular buildings and a straight wire of length L. The task is to find the maximum number of continuous buildings the wire can cover if it is round it once around the building.
Note: Distance between each building is 1 unit length, so it takes 1 unit length extra to reach one build to the next building.
Examples:
Input: arr[] = {4, 1, 6}, L = 24
Output: 2
Explanation: 1 round of building will require pi * d length of wire, where pi is 3.14159 and d is the diameter of circle.
For 1st building → 12.566 length of wire required, remaining wire→ 24-12.566=11.434 -1( to reach next building)=10.434
Similarly, for second building 3.141 length of wire required, remaining wire→ 10.434-3.141= 7.292 -1= 6.292
For third building 18.849, which is > remaining wire i.e, 18.849>6.292
Therefore, Maximum of 2 building can be covered.Input: arr[] = {2, 5, 3, 4}, L = 36
Output: 3
Approach: The idea is to use the greedy approach. Follow the steps below to solve the problem:
- Initialize variables curr_sum, start, curr_count, max_count to calculate the current sum of elements, current count, starting index of the current subarray, and maximum count of covered buildings.
- Traverse the array for i in range [0, N – 1],
- Update current sum of wire length required, curr_sum += arr[i] * 3.14
- If i is greater than 0, Increment curr_sum by 1.
- If curr_sum ≤ L. Increment curr_count by 1
- Otherwise, exclude arr[start] from the current group
- Update curr_sum = curr_sum – ((double)arr[start] * 3.14)
- Decrement curr_sum by 1
- Increment start pointer by 1
- Decrement curr_count by 1
- Update max_count i.e, max_count = max(curr_count, max_count).
- After completing the above steps, print the value of max_count as the result.
Below is the implementation of the above approach.
C++14
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; const double Pi = 3.141592; // Function to find the maximum // number of buildings covered int MaxBuildingsCovered( int arr[], int N, int L) { // Store the current sum double curr_sum = 0; int start = 0, curr_count = 0, max_count = 0; // Traverse the array for ( int i = 0; i < N; i++) { // Add the length of wire required for // current building to cur_sum curr_sum = curr_sum + (( double )arr[i] * Pi); // Add extra unit distance 1 if (i != 0) curr_sum += 1; // If curr_sum <= length of wire // increment count by 1 if (curr_sum <= L) { curr_count++; } // If curr_sum > length of wire // increment start by 1 and // decrement count by 1 and // update the new curr_sum else if (curr_sum > L) { curr_sum = curr_sum - (( double )arr[start] * Pi); curr_sum -= 1; start++; curr_count--; } // Update the max_count max_count = max(curr_count, max_count); } // Return the max_count return max_count; } // Driver Code int main() { // Given Input int arr[] = { 4, 1, 6, 2 }; int L = 24; // Size of the array int N = sizeof (arr) / sizeof (arr[0]); // Function Call cout << MaxBuildingsCovered(arr, N, L); return 0; } |
Java
// Java program for the above approach import java.io.*; class GFG{ static final double Pi = 3.141592 ; // Function to find the maximum // number of buildings covered static int MaxBuildingsCovered( int arr[], int N, int L) { // Store the current sum double curr_sum = 0 ; int start = 0 , curr_count = 0 , max_count = 0 ; // Traverse the array for ( int i = 0 ; i < N; i++) { // Add the length of wire required for // current building to cur_sum curr_sum = curr_sum + (( double )arr[i] * Pi); // Add extra unit distance 1 if (i != 0 ) curr_sum += 1 ; // If curr_sum <= length of wire // increment count by 1 if (curr_sum <= L) { curr_count++; } // If curr_sum > length of wire // increment start by 1 and // decrement count by 1 and // update the new curr_sum else if (curr_sum > L) { curr_sum = curr_sum - (( double )arr[start] * Pi); curr_sum -= 1 ; start++; curr_count--; } // Update the max_count max_count = Math.max(curr_count, max_count); } // Return the max_count return max_count; } // Driver Code public static void main (String[] args) { // Given Input int arr[] = { 4 , 1 , 6 , 2 }; int L = 24 ; // Size of the array int N = arr.length; // Function Call System.out.println(MaxBuildingsCovered(arr, N, L)); } } // This code is contributed by Dharanendra L V. |
Python3
# Python3 program for the above approach Pi = 3.141592 # Function to find the maximum # number of buildings covered def MaxBuildingsCovered(arr, N, L): # Store the current sum curr_sum = 0 start = 0 curr_count = 0 max_count = 0 # Traverse the array for i in range (N): # Add the length of wire required for # current building to cur_sum curr_sum = curr_sum + (arr[i] * Pi) # Add extra unit distance 1 if (i ! = 0 ): curr_sum + = 1 # If curr_sum <= length of wire # increment count by 1 if (curr_sum < = L): curr_count + = 1 # If curr_sum > length of wire # increment start by 1 and # decrement count by 1 and # update the new curr_sum elif (curr_sum > L): curr_sum = curr_sum - (arr[start] * Pi) curr_sum - = 1 start + = 1 curr_count - = 1 # Update the max_count max_count = max (curr_count, max_count) # Return the max_count return max_count # Driver Code if __name__ = = '__main__' : # Given Input arr = [ 4 , 1 , 6 , 2 ] L = 24 # Size of the array N = len (arr) # Function Call print (MaxBuildingsCovered(arr, N, L)) # This code is contributed by SURENDRA_GANGWAR. |
C#
// C# program for the above approach using System; class GFG{ static double Pi = 3.141592; // Function to find the maximum // number of buildings covered static int MaxBuildingsCovered( int [] arr, int N, int L) { // Store the current sum double curr_sum = 0; int start = 0, curr_count = 0, max_count = 0; // Traverse the array for ( int i = 0; i < N; i++) { // Add the length of wire required for // current building to cur_sum curr_sum = curr_sum + (( double )arr[i] * Pi); // Add extra unit distance 1 if (i != 0) curr_sum += 1; // If curr_sum <= length of wire // increment count by 1 if (curr_sum <= L) { curr_count++; } // If curr_sum > length of wire // increment start by 1 and // decrement count by 1 and // update the new curr_sum else if (curr_sum > L) { curr_sum = curr_sum - (( double )arr[start] * Pi); curr_sum -= 1; start++; curr_count--; } // Update the max_count max_count = Math.Max(curr_count, max_count); } // Return the max_count return max_count; } // Driver code static void Main() { // Given Input int [] arr = { 4, 1, 6, 2 }; int L = 24; // Size of the array int N = arr.Length; // Function Call Console.Write(MaxBuildingsCovered(arr, N, L)); } } // This code is contributed by code_hunt |
Javascript
<script> // JavaScript program for the above approach var Pi = 3.141592; // Function to find the maximum // number of buildings covered function MaxBuildingsCovered(arr, N, L) { // Store the current sum var curr_sum = 0; var start = 0, curr_count = 0, max_count = 0; // Traverse the array for ( var i = 0; i < N; i++) { // Add the length of wire required for // current building to cur_sum curr_sum = curr_sum + parseFloat(arr[i]) * Pi; // Add extra unit distance 1 if (i != 0) curr_sum += 1; // If curr_sum <= length of wire // increment count by 1 if (curr_sum <= L) { curr_count++; } // If curr_sum > length of wire // increment start by 1 and // decrement count by 1 and // update the new curr_sum else if (curr_sum > L) { curr_sum = curr_sum - parseFloat(arr[start]) * Pi; curr_sum -= 1; start++; curr_count--; } // Update the max_count max_count = Math.max(curr_count, max_count); } // Return the max_count return max_count; } // Driver code // Given Input var arr = [4, 1, 6, 2]; var L = 24; // Size of the array var N = arr.length; // Function Call document.write(MaxBuildingsCovered(arr, N, L)); // This code is contributed by rdtank. </script> |
2
Time Complexity: O(N)
Auxiliary Space: O(1)
Please Login to comment...