Skip to content
Related Articles

Related Articles

Maximize count of subsets into which the given array can be split such that it satisfies the given condition
  • Last Updated : 15 Feb, 2021

Given an array arr[] of size N and a positive integer X, the task is to the partition the array into maximum number of subsets such that multiplication of the smallest element of each subset with the count of elements in the subsets is greater than or equal to K. Print the maximum count of such subsets possible.

Examples:

Input: arr[] = {1, 3, 3, 7}, X = 3
Output: 3
Explanation: Partition the array into 3 subsets { {1, 3}, {3}, {7} }. Therefore, the required output is 3.

Input: arr[] = {2, 4, 2, 5, 1}, X = 2
Output: 4

Approach: The problem can be solved using Greedy technique. Follow the steps below to solve the problem:



  • Sort the array elements in decreasing order.
  • Traverse the array and keep track of the size of the current subset
  • As the array is sorted in decreasing order, the right most element of the subset will be the smallest element of the current division.
  • So, if (size of current subset * current element) is greater than or equal to X, then increment count and reset the size of the current partition to 0.
  • Finally, print the count obtained.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count maximum subsets into
// which the given array can be split such
// that it satisfies the given condition
void maxDivisions(int arr[], int N, int X)
{
 
    // Sort the array in decreasing order
    sort(arr, arr + N, greater<int>());
 
    // Stores count of subsets possible
    int maxSub = 0;
 
    // Stores count of elements
    // in current subset
    int size = 0;
 
    // Traverse the array arr[]
    for (int i = 0; i < N; i++) {
 
        // Update size
        size++;
 
        // If product of the smallest element
        // present in the current subset and
        // size of current subset is >= K
        if (arr[i] * size >= X) {
 
            // Update maxSub
            maxSub++;
 
            // Update size
            size = 0;
        }
    }
 
    cout << maxSub << endl;
}
 
// Driver Code
int main()
{
 
    // Given array
    int arr[] = { 1, 3, 3, 7 };
 
    // Size of the array
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Given value of X
    int X = 3;
 
    maxDivisions(arr, N, X);
 
    return 0;
}

Java




// Java program for the above approach
import java.util.*;
class GFG
{
 
// Function to count maximum subsets into
// which the given array can be split such
// that it satisfies the given condition
static void maxDivisions(Integer arr[], int N, int X)
{
 
    // Sort the array in decreasing order
    Arrays.sort(arr,Collections.reverseOrder());
 
    // Stores count of subsets possible
    int maxSub = 0;
 
    // Stores count of elements
    // in current subset
    int size = 0;
 
    // Traverse the array arr[]
    for (int i = 0; i < N; i++)
    {
 
        // Update size
        size++;
 
        // If product of the smallest element
        // present in the current subset and
        // size of current subset is >= K
        if (arr[i] * size >= X)
        {
 
            // Update maxSub
            maxSub++;
 
            // Update size
            size = 0;
        }
    }
    System.out.print(maxSub +"\n");
}
 
// Driver Code
public static void main(String[] args)
{
 
    // Given array
    Integer arr[] = { 1, 3, 3, 7 };
 
    // Size of the array
    int N = arr.length;
 
    // Given value of X
    int X = 3;
    maxDivisions(arr, N, X);
 
}
}
 
// This code is contributed by shikhasingrajput

Python3




# Python3 program for the above approach
 
# Function to count maximum subsets into
# which the given array can be split such
# that it satisfies the given condition
def maxDivisions(arr, N, X) :
 
    # Sort the array in decreasing order
    arr.sort(reverse = True)
     
    # Stores count of subsets possible
    maxSub = 0;
 
    # Stores count of elements
    # in current subset
    size = 0;
 
    # Traverse the array arr[]
    for i in range(N) :
 
        # Update size
        size += 1;
 
        # If product of the smallest element
        # present in the current subset and
        # size of current subset is >= K
        if (arr[i] * size >= X) :
 
            # Update maxSub
            maxSub += 1;
 
            # Update size
            size = 0;
    print(maxSub);
 
# Driver Code
if __name__ == "__main__" :
 
    # Given array
    arr = [ 1, 3, 3, 7 ];
 
    # Size of the array
    N = len(arr);
 
    # Given value of X
    X = 3;
 
    maxDivisions(arr, N, X);
     
    # This code is contributed by AnkThon

C#




// C# program for the above approach
using System;
class GFG
{
 
  // Function to count maximum subsets into
  // which the given array can be split such
  // that it satisfies the given condition
  static void maxDivisions(int[] arr, int N, int X)
  {
 
    // Sort the array in decreasing order
    Array.Sort(arr);
    Array.Reverse(arr);
 
    // Stores count of subsets possible
    int maxSub = 0;
 
    // Stores count of elements
    // in current subset
    int size = 0;
 
    // Traverse the array arr[]
    for (int i = 0; i < N; i++)
    {
 
      // Update size
      size++;
 
      // If product of the smallest element
      // present in the current subset and
      // size of current subset is >= K
      if (arr[i] * size >= X)
      {
 
        // Update maxSub
        maxSub++;
 
        // Update size
        size = 0;
      }
    }
 
    Console.WriteLine(maxSub);
  }
 
  // Driver Code
  public static void Main()
  {
 
    // Given array
    int[] arr = { 1, 3, 3, 7 };
 
    // Size of the array
    int N = arr.Length;
 
    // Given value of X
    int X = 3;
    maxDivisions(arr, N, X);
  }
}
 
// This code is contributed by subhammahato348.
Output: 
3

 

Time Complexity: O(N * log(N))
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :