Matplotlib.colors.hsv_to_rgb() in Python
Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack.
matplotlib.colors.hsv_to_rgb()
The matplotlib.colors.hsv_to_rgb() function is used to convert hsv values to rgb.
Syntax: matplotlib.colors.hsv_to_rgb(hsv)
Parameters:
- hsv: It is an array-like argument in the form of (…, 3) where all values are assumed to be in the range of 0 to 1.
Returns:
- rgb: It returns an ndarray in the form of (…, 3) that comprises of colors converted to RGB values within the range of 0 to 1.
Example 1:
import matplotlib.pyplot as plt import matplotlib.colors import numpy as np # helper function to find # mid-points def helper(z): k = () for i in range (z.ndim): z = (z[k + np.index_exp[: - 1 ]] + z[k + np.index_exp[ 1 :]]) / 2.0 k + = np.index_exp[:] return z # dummy coordinates with rgb # values attached with each s, alpha, x = np.mgrid[ 0 : 1 : 11j , 0 :np.pi * 2 : 25j , - 0.5 : 0.5 : 11j ] a = s * np.cos(alpha) b = s * np.sin(alpha) sc, alphac, xc = helper(s), helper(alpha), helper(x) # wobbly torus about [0.7, *, 0] sphere = (sc - 0.7 ) * * 2 + (xc + 0.2 * np.cos(alphac * 2 )) * * 2 < 0.2 * * 2 # combining the color components hsv = np.zeros(sphere.shape + ( 3 ,)) hsv[..., 0 ] = alphac / (np.pi * 2 ) hsv[..., 1 ] = sc hsv[..., 2 ] = xc + 0.5 #the hsv to rgb function plot_colors = matplotlib.colors.hsv_to_rgb(hsv) # and plot everything figure = plt.figure() axes = figure.gca(projection = '3d' ) axes.voxels(a, b, x, sphere, facecolors = plot_colors, edgecolors = np.clip( 2 * plot_colors - 0.5 , 0 , 1 ), linewidth = 0.5 ) plt.show() |
Output:
Example 2:
from matplotlib.colors import hsv_to_rgb # sample squares for example first_square = np.full(( 50 , 50 , 3 ), fill_value = '698' , dtype = np.uint8) / 255.0 second_square = np.full(( 50 , 50 , 3 ), fill_value = '385' , dtype = np.uint8) / 255.0 plt.subplot( 1 , 2 , 1 ) plt.imshow(hsv_to_rgb(first_square)) plt.subplot( 1 , 2 , 2 ) plt.imshow(hsv_to_rgb(second_square)) plt.show() |
Output:
Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.
To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.