Matplotlib.colors.rgb_to_hsv() in Python
Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack.
matplotlib.colors.rgb_to_hsv()
The matplotlib.colors.rgb_to_hsv() function belongs to the matplotlib.colors module. The matplotlib.colors.rgb_to_hsv()
function is used to convert float rgb in the range of 0 to 1 into a numpy array of hsv values.
Syntax: matplotlib.colors.rgb_to_hsv(arr)
Parameters:
- arr: It is an array-like argument in the form of (…, 3) where all values must to be in the range of 0 to 1.
Returns:
- hsv: It returns an ndarray in the form of (…, 3) that comprises of colors converted to hsv values within the range of 0 to 1.
Example 1:
import matplotlib.pyplot as plt import matplotlib.colors as mcolors # helper function to plot a # color table def colortable(colors, title, colors_sort = True , emptycols = 0 ): # cell dimensions width = 212 height = 22 swatch_width = 48 margin = 12 topmargin = 40 # Sorting colors based on hue, # saturation, value and name. if colors_sort is True : to_hsv = sorted (( tuple (mcolors.rgb_to_hsv(mcolors.to_rgb(color))), name) for name, color in colors.items()) names = [name for hsv, name in to_hsv] else : names = list (colors) length_of_names = len (names) length_cols = 4 - emptycols length_rows = length_of_names / / length_cols + int (length_of_names % length_cols > 0 ) width2 = width * 4 + 2 * margin height2 = height * length_rows + margin + topmargin dpi = 72 figure, axes = plt.subplots(figsize = (width2 / dpi, height2 / dpi), dpi = dpi) figure.subplots_adjust(margin / width2, margin / height2, (width2 - margin) / width2, (height2 - topmargin) / height2) axes.set_xlim( 0 , width * 4 ) axes.set_ylim(height * (length_rows - 0.5 ), - height / 2. ) axes.yaxis.set_visible( False ) axes.xaxis.set_visible( False ) axes.set_axis_off() axes.set_title(title, fontsize = 24 , loc = "left" , pad = 10 ) for i, name in enumerate (names): rows = i % length_rows cols = i / / length_rows y = rows * height swatch_start_x = width * cols swatch_end_x = width * cols + swatch_width text_pos_x = width * cols + swatch_width + 7 axes.text(text_pos_x, y, name, fontsize = 14 , horizontalalignment = 'left' , verticalalignment = 'center' ) axes.hlines(y, swatch_start_x, swatch_end_x, color = colors[name], linewidth = 18 ) return figure colortable(mcolors.BASE_COLORS, "Base Colors" , colors_sort = False , emptycols = 1 ) colortable(mcolors.TABLEAU_COLORS, "Tableau Palette" , colors_sort = False , emptycols = 2 ) colortable(mcolors.CSS4_COLORS, "CSS Colors" ) plt.show() |
Output:
Example 2:
Image Used:
import matplotlib import matplotlib.pyplot as plt import matplotlib.image as mpimg image = mpimg.imread( 'food.jpeg' ) plt.title( "Output image" ) hsv = matplotlib.colors.rgb_to_hsv(image) plt.imshow(hsv) |
Output:
Please Login to comment...