matplotlib.axes.Axes.vlines() in Python
Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.
matplotlib.axes.Axes.vlines() Function
The Axes.vlines() function in axes module of matplotlib library is used to Plot vertical lines at each x from ymin to ymax.
Syntax: Axes.vlines(self, x, ymin, ymax, colors=’k’, linestyles=’solid’, label=”, *, data=None, **kwargs)
Parameters: This method accept the following parameters that are described below:
- x: This parameter is the sequence of x-indexes where to plot the lines.
- ymin, ymax: These parameter contains an array.And they represents the beginning and end of each line.
- colors: This parameter is an optional parameter. And it is the color of the lines with default value k.
- linetsyle: This parameter is also an optional parameter. And it is used to represent the linestyle{‘solid’, ‘dashed’, ‘dashdot’, ‘dotted’}.
- label: This parameter is also an optional parameter.It is the label of the plot.
Returns: This returns the LineCollection.
Below examples illustrate the matplotlib.axes.Axes.vlines() function in matplotlib.axes:
Example #1:
# Implementation of matplotlib function import numpy as np from matplotlib import patches import matplotlib.pyplot as plt fig, ax = plt.subplots() ax.vlines([ 1 , 2 , 3 , 4 ], 0 , 1 , color = "green" , transform = ax.get_xaxis_transform()) ax.set_title( 'matplotlib.axes.Axes.vlines Example' ) plt.show() |
Output:
Example #2:
# Implementation of matplotlib function import numpy as np from matplotlib import patches import matplotlib.pyplot as plt t = np.arange( 0.0 , 5.0 , 0.1 ) s = np.exp( - t) + np.cos( 3 * np.pi * t) + np.sin(np.pi * t) nse = np.random.normal( 0.0 , 0.8 , t.shape) * s fig, ax = plt.subplots() ax.vlines(t, [ 0 ], s) ax.vlines([ 1 , 2 ], 0 , 1 , color = "lightgreen" , transform = ax.get_xaxis_transform()) ax.set_xlabel( 'time (s)' ) ax.set_title( 'matplotlib.axes.Axes.vlines Example' ) plt.show() |
Output:
Please Login to comment...