Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library.
The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.
Example:
import datetime import matplotlib.pyplot as plt from matplotlib.dates import DayLocator, HourLocator, DateFormatter, drange import numpy as np date1 = datetime.datetime( 2000 , 3 , 2 ) date2 = datetime.datetime( 2000 , 3 , 6 ) delta = datetime.timedelta(hours = 6 ) dates = drange(date1, date2, delta) y = np.arange( len (dates)) fig, ax = plt.subplots() ax.plot_date(dates, y * * 2 ) ax.set_xlim(dates[ 0 ], dates[ - 1 ]) ax.xaxis.set_major_locator(DayLocator()) ax.xaxis.set_minor_locator(HourLocator( range ( 0 , 25 , 6 ))) ax.xaxis.set_major_formatter(DateFormatter( '% Y-% m-% d' )) ax.fmt_xdata = DateFormatter( '% Y-% m-% d % H:% M:% S' ) fig.autofmt_xdate() plt.title( "Matplotlib Axes Class Example" ) plt.show() |
Output:
matplotlib.axes.Axes.plot() Function
The Axes.plot() function in axes module of matplotlib library is used to plot y versus x as lines and/or markers.
Syntax: Axes.plot(self, *args, scalex=True, scaley=True, data=None, **kwargs)
Parameters: This method accept the following parameters that are described below:
- x, y: These parameter are the horizontal and vertical coordinates of the data points. x values are optional.
- fmt: This parameter is an optional parameter and it contains the string value.
- data: This parameter is an optional parameter and it is an object with labelled data.
Returns: This returns the following:
- lines:This returns the list of Line2D objects representing the plotted data.
Below examples illustrate the matplotlib.axes.Axes.plot() function in matplotlib.axes:
Example #1:
# Implementation of matplotlib function import matplotlib.pyplot as plt import numpy as np # make an agg figure fig, ax = plt.subplots() ax.plot([ 1 , 2 , 3 ]) ax.set_title( 'matplotlib.axes.Axes.plot() example 1' ) fig.canvas.draw() plt.show() |
Output:
Example #2:
# Implementation of matplotlib function import matplotlib.pyplot as plt import numpy as np # Fixing random state for reproducibility np.random.seed( 19680801 ) # create random data xdata = np.random.random([ 2 , 10 ]) # split the data into two parts xdata1 = xdata[ 0 , :] xdata2 = xdata[ 1 , :] # sort the data so it makes clean curves xdata1.sort() xdata2.sort() # create some y data points ydata1 = xdata1 * * 2 ydata2 = 1 - xdata2 * * 3 # plot the data fig = plt.figure() ax = fig.add_subplot( 1 , 1 , 1 ) ax.plot(xdata1, ydata1, color = 'tab:blue' ) ax.plot(xdata2, ydata2, color = 'tab:orange' ) # set the limits ax.set_xlim([ 0 , 1 ]) ax.set_ylim([ 0 , 1 ]) ax.set_title( 'matplotlib.axes.Axes.plot() example 2' ) # display the plot plt.show() |
Output:
Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.
To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.