Skip to content
Related Articles

Related Articles

matplotlib.axes.Axes.vlines() in Python

Improve Article
Save Article
Like Article
  • Last Updated : 13 Apr, 2020

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.

matplotlib.axes.Axes.vlines() Function

The Axes.vlines() function in axes module of matplotlib library is used to Plot vertical lines at each x from ymin to ymax.

Syntax: Axes.vlines(self, x, ymin, ymax, colors=’k’, linestyles=’solid’, label=”, *, data=None, **kwargs)

Parameters: This method accept the following parameters that are described below:

  • x: This parameter is the sequence of x-indexes where to plot the lines.
  • ymin, ymax: These parameter contains an array.And they represents the beginning and end of each line.
  • colors: This parameter is an optional parameter. And it is the color of the lines with default value k.
  • linetsyle: This parameter is also an optional parameter. And it is used to represent the linestyle{‘solid’, ‘dashed’, ‘dashdot’, ‘dotted’}.
  • label: This parameter is also an optional parameter.It is the label of the plot.

Returns: This returns the LineCollection.

Below examples illustrate the matplotlib.axes.Axes.vlines() function in matplotlib.axes:

Example #1:




# Implementation of matplotlib function
       
import numpy as np
from matplotlib import patches
import matplotlib.pyplot as plt
  
fig, ax = plt.subplots()
ax.vlines([1, 2, 3, 4], 0, 1
          color ="green",
          transform = ax.get_xaxis_transform())
  
ax.set_title('matplotlib.axes.Axes.vlines Example')
  
plt.show()

Output:

Example #2:




# Implementation of matplotlib function
       
import numpy as np
from matplotlib import patches
import matplotlib.pyplot as plt
   
t = np.arange(0.0, 5.0, 0.1)
s = np.exp(-t) + np.cos(3 * np.pi * t) + np.sin(np.pi * t)
nse = np.random.normal(0.0, 0.8, t.shape) * s
  
fig, ax = plt.subplots()
  
ax.vlines(t, [0], s)
ax.vlines([1, 2], 0, 1, color ="lightgreen"
          transform = ax.get_xaxis_transform())
  
ax.set_xlabel('time (s)')
ax.set_title('matplotlib.axes.Axes.vlines Example')
  
plt.show()

Output:


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!