Skip to content
Related Articles

Related Articles

Matplotlib.axes.Axes.plot() in Python
  • Last Updated : 12 Apr, 2020

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library.

The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.
Example:

filter_none

edit
close

play_arrow

link
brightness_4
code

import datetime
import matplotlib.pyplot as plt
from matplotlib.dates import DayLocator, HourLocator, DateFormatter, drange
import numpy as np
  
date1 = datetime.datetime(2000, 3, 2)
date2 = datetime.datetime(2000, 3, 6)
delta = datetime.timedelta(hours = 6)
dates = drange(date1, date2, delta)
  
y = np.arange(len(dates))
  
fig, ax = plt.subplots()
ax.plot_date(dates, y ** 2)
  
ax.set_xlim(dates[0], dates[-1])
  
ax.xaxis.set_major_locator(DayLocator())
ax.xaxis.set_minor_locator(HourLocator(range(0, 25, 6)))
ax.xaxis.set_major_formatter(DateFormatter('% Y-% m-% d'))
  
ax.fmt_xdata = DateFormatter('% Y-% m-% d % H:% M:% S')
fig.autofmt_xdate()
  
plt.title("Matplotlib Axes Class Example")
plt.show()

chevron_right


Output:

matplotlib.axes.Axes.plot() Function

The Axes.plot() function in axes module of matplotlib library is used to plot y versus x as lines and/or markers.

Syntax: Axes.plot(self, *args, scalex=True, scaley=True, data=None, **kwargs)



Parameters: This method accept the following parameters that are described below:

  • x, y: These parameter are the horizontal and vertical coordinates of the data points. x values are optional.
  • fmt: This parameter is an optional parameter and it contains the string value.
  • data: This parameter is an optional parameter and it is an object with labelled data.

Returns: This returns the following:

  • lines:This returns the list of Line2D objects representing the plotted data.

Below examples illustrate the matplotlib.axes.Axes.plot() function in matplotlib.axes:

Example #1:

filter_none

edit
close

play_arrow

link
brightness_4
code

# Implementation of matplotlib function
    
import matplotlib.pyplot as plt
import numpy as np
  
# make an agg figure
fig, ax = plt.subplots()
ax.plot([1, 2, 3])
ax.set_title('matplotlib.axes.Axes.plot() example 1')
fig.canvas.draw()
plt.show()

chevron_right


Output:

Example #2:

filter_none

edit
close

play_arrow

link
brightness_4
code

# Implementation of matplotlib function
  
import matplotlib.pyplot as plt
import numpy as np
  
# Fixing random state for reproducibility
np.random.seed(19680801)
  
# create random data
xdata = np.random.random([2, 10])
  
# split the data into two parts
xdata1 = xdata[0, :]
xdata2 = xdata[1, :]
  
# sort the data so it makes clean curves
xdata1.sort()
xdata2.sort()
  
# create some y data points
ydata1 = xdata1 ** 2
ydata2 = 1 - xdata2 ** 3
  
# plot the data
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(xdata1, ydata1, color ='tab:blue')
ax.plot(xdata2, ydata2, color ='tab:orange')
  
  
# set the limits
ax.set_xlim([0, 1])
ax.set_ylim([0, 1])
  
ax.set_title('matplotlib.axes.Axes.plot() example 2')
  
# display the plot
plt.show()

chevron_right


Output:

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :