Skip to content
Related Articles
matplotlib.axes.Axes.loglog() in Python
• Last Updated : 13 Apr, 2020

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.

## matplotlib.axes.Axes.loglog() Function

The Axes.errorbar() function in axes module of matplotlib library is used to make a plot with log scaling on both the x and y axis.

Syntax:

`Axes.loglog(self, *args, **kwargs)`

Parameters: This method accept the following parameters that are described below:

• basex, basey: These parameter are Base of the x/y logarithm and are optional with default value 10.
• subsx, subsy: These parameter are the sequence of location of the minor x/y ticks and are optional.
• nonposx, nonposy: These parameter are non-positive values in x or y that can be masked as invalid, or clipped to a very small positive number.

Returns: This returns the following:

• lines:This returns the list of Line2D objects representing the plotted data..

Below examples illustrate the matplotlib.axes.Axes.loglog() function in matplotlib.axes:

Example-1:

 `# Implementation of matplotlib function``     ` `import` `numpy as np``import` `matplotlib.pyplot as plt`` ` `t ``=` `np.arange(``0.01``, ``20.0``, ``0.01``)`` ` `# Create figure``fig, ax ``=` `plt.subplots()`` ` `# log x and y axis``ax.loglog(t, ``20` `*` `np.exp(``-``t ``/` `10.0``), basex ``=` `2``)`` ` `ax.set_title(``'matplotlib.axes.Axes.loglog Example2'``)``plt.show()`

Output: Example-2:

 `# Implementation of matplotlib function``     ` `import` `numpy as np``import` `matplotlib.pyplot as plt`` ` `fig, ax ``=` `plt.subplots(constrained_layout ``=` `True``)``x ``=` `np.arange(``0.02``, ``1``, ``0.02``)``np.random.seed(``19680801``)``y ``=` `np.random.randn(``len``(x)) ``*``*` `2``ax.loglog(x, y)``ax.set_xlabel(``'f [Hz]'``)``ax.set_ylabel(``'PSD'``)``ax.set_title(``'Random spectrum'``)`` ` ` ` `def` `forward(x):``    ``return` `1` `/` `x`` ` ` ` `def` `inverse(x):``    ``return` `1` `/` `x`` ` `ax.set_title(``'matplotlib.axes.Axes.loglog Example2'``)``plt.show()`

Output: Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up