Skip to content
Related Articles

Related Articles

Improve Article

Matplotlib.axes.Axes.boxplot() in Python

  • Last Updated : 13 Apr, 2020
Geek Week

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.

matplotlib.axes.Axes.boxplot() Function

The Axes.boxplot() function in axes module of matplotlib library is used to make a box and whisker plot for each column of x or each vector in sequence x.

Syntax: Axes.boxplot(self, x, notch=None, sym=None, vert=None, whis=None, positions=None, widths=None, patch_artist=None, bootstrap=None, usermedians=None, conf_intervals=None, meanline=None, showmeans=None, showcaps=None, showbox=None, showfliers=None, boxprops=None, labels=None, flierprops=None, medianprops=None, meanprops=None, capprops=None, whiskerprops=None, manage_ticks=True, autorange=False, zorder=None, *, data=None)

Parameters: This method accept the following parameters that are described below:

  • x: This parameter is a sequence of data.
  • notch: This parameter will produce a notched box plot if true. Otherwise, a rectangular boxplot is produced.
  • sym : This parameter is an optional parameter and contain string value. It is a default symbol for flier points.
  • vert: This parameter is an optional parameter and contain boolean value. It makes the boxes vertical if true.Otherwise horizontal.
  • whis : This parameter determines the reach of the whiskers to the beyond the first and third quartiles.
  • bootstrap : This parameter is also an optional parameter which contain boolean value and specifies whether to bootstrap the confidence intervals around the median for notched boxplots.
  • usermedians : This parameter is an array or sequence whose first dimension is compatible with x.
  • conf_intervals : This parameter is also an array or sequence whose first dimension is compatible with x and whose second dimension is 2
  • positions : This parameter is used to sets the positions of the boxes.
  • widths: This parameter is used to sets the width of each box either with a scalar or a sequence.
  • patch_artist : This parameter is used to produce boxes with the Line2D artist if it is false. Otherwise, boxes with Patch artists.
  • labels : This parameter is the labels for each dataset.
  • manage_ticks : This parameter is used to adjust the tick locations and labels.
  • zorder : This parameter is used to sets the zorder of the boxplot.

Returns: This returns the following:



  • result :This returns the dictionary which maps each component of the boxplot to a list of the matplotlib.lines.Line2D.

Below examples illustrate the matplotlib.axes.Axes.boxplot() function in matplotlib.axes:

Example-1:




# Implementation of matplotlib function
import numpy as np
import matplotlib.pyplot as plt
   
np.random.seed(10**7)
  
val1 = np.random.rand(50) * 80
val2 = np.ones(80) * 50
val3 = np.random.rand(50) * 80 + 100
val4 = np.random.rand(50) * -80
data = np.concatenate((val1, val2, val3, val4))
  
fig1, ax1 = plt.subplots()
ax1.boxplot(data)
   
ax1.set_title('matplotlib.axes.Axes.boxplot() Example')
plt.show()

Output:

Example-2:




# Implementation of matplotlib function
import numpy as np
import matplotlib.pyplot as plt
   
np.random.seed(10**7)
  
val1 = np.random.rand(50) * 80
val2 = np.ones(25) * 80
val3 = np.random.rand(25) * 80 + 100
val4 = np.random.rand(25) * -80
data = np.concatenate((val1, val2, val3, val4))
data1 = np.concatenate((val2, val4, val1, val3))
data = [data, data1]
  
fig1, ax1 = plt.subplots()
ax1.boxplot(data, notch = True, vert = False, whis = 0.75)
   
ax1.set_title('matplotlib.axes.Axes.boxplot() Example')
plt.show()

Output:

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :