Skip to content
Related Articles

Related Articles

Matplotlib.axes.Axes.add_table() in Python
  • Last Updated : 21 Apr, 2020

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.

matplotlib.axes.Axes.add_table() Function

The Axes.add_table() function in axes module of matplotlib library is also used to add a Table to the axes’ tables and return the table.

Syntax: Axes.add_table(self, tab)

Parameters: This method accept the following parameters that are described below:

  • tab: This parameter is the table instances which is to be add.

Returns: This returns the following:



  • table : This method returns the created table.

Below examples illustrate the matplotlib.axes.Axes.add_table() function in matplotlib.axes:

Example 1:




# Implementation of matplotlib function
import matplotlib.pyplot as plt
import matplotlib.table as tbl
  
val1 = ["{:X}".format(i) for i in range(10)]
val2 = ["{:02X}".format(10 * i) for i in range(10)]
val3 = [["" for c in range(10)] for r in range(10)]
  
fig, ax = plt.subplots()
ax.set_axis_off()
table = tbl.table(
    ax,
    cellText = val3,
    rowLabels = val2,
    colLabels = val1,
    rowColours = ["palegreen"] * 10,
    colColours =["palegreen"] * 10,
    cellLoc ='center'
    loc ='upper left')
  
ax.add_table(table)
  
ax.set_title('matplotlib.axes.Axes.add_table()\
function Example', fontweight ="bold")
  
plt.show()

Output:

Example 2:




# Implementation of matplotlib function
import matplotlib.pyplot as plt
import matplotlib.table as tbl
import numpy as np  
    
data = [[ 66, 17471, 58],
        [ 58, 13945, 164],
        [ 8952, 18, 81],
        [ 7858, 12368],
        [13, 159, 164, 80]]
    
val1 = ('Geek1', 'Geek2', 'Geek3', 'Geek4')
val2 = ['Month % d' % x for x in (5, 4, 3, 2, 1)]
val3 = np.arange(0, 2500, 500)
val4 = 1000
val5 = plt.cm.Greys(np.linspace(0, 0.5, len(val2)))
val6 = len(data)
val7 = np.arange(len(val1)) + 0.3
val8 = 0.4
val9 = np.zeros(len(val1))
    
lista = []
   
fig, ax = plt.subplots()
    
for row in range(val6):
      
    ax.bar(val7, data[row], val8, 
           bottom = val9,
           color = val5[row])
    val9 = val9 + data[row]
      
    lista.append([(x // 50) for x in val9])
       
table = tbl.table(ax, cellText = lista,
                      rowLabels = val2,
                      rowColours = val5,
                      colLabels = val1,
                      loc ='bottom')
ax.add_table(table)
  
plt.subplots_adjust(left = 0.2, bottom = 0.2)
  
ax.set_xticks([])
  
ax.set_title('matplotlib.axes.Axes.add_table() \
function Example', fontweight ="bold")
  
plt.grid()
plt.show()

Output:

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up
Recommended Articles
Page :