Longest Palindromic Substring using Palindromic Tree | Set 3

Given a string, find the longest substring which is palindrome. For example, if the given string is “forgeeksskeegfor”, the output should be “geeksskeeg”.

Prerequisite : Palindromic Tree | Longest Palindromic Substring

Structure of Palindromic Tree :
Palindromic Tree’s actual structure is close to directed graph. It is actually a merged structure of two Trees which share some common nodes(see the figure below for better understanding). Tree nodes store palindromic substrings of given string by storing their indices.
This tree consists of two types of edges :
1. Insertion edge (weighted edge)
2. Maximum Palindromic Suffix (un-weighted)



Insertion Edge :
Insertion edge from a node u to v with some weight x means that the node v is formed by inserting x at the front and end of the string at u. As ‘u’ is already a palindrome, hence the resulting string at node v will also be a palindrome. x will be a single character for every edge. Therefore, a node can have max 26 insertion edges (considering lower letter string).
Maximum Palindromic Suffix Edge :
As the name itself indicates that for a node this edge will point to its Maximum Palindromic Suffix String node. We will not be considering the complete string itself as the Maximum Palindromic Suffix as this will make no sense(self loops). For simplicity purpose, we will call it as Suffix edge(by which we mean maximum suffix except the complete string). It is quite obvious that every node will have only 1 Suffix Edge as we will not store duplicate strings in the tree.
We will create all the palindromic substrings and then return the last one we got, since that would be the longest palindromic substring so far.
Since a Palindromic Tree stores the palindromes in order of arrival of a certain character, so the Longest will always be at the last index of our tree array.
Below is the implementation of above approach :

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP code for Longest Palindromic substring
// using Palindromic Tree data structure
#include <bits/stdc++.h>
using namespace std;
  
#define MAXN  1000
  
struct Node
{
    // store start and end indexes of current
    // Node inclusively
    int start, end;
  
    // stores length of substring
    int length;
  
    // stores insertion Node for all characters a-z
    int insertionEdge[26];
  
    // stores the Maximum Palindromic Suffix Node for
    // the current Node
    int suffixEdge;
};
  
// two special dummy Nodes as explained above
Node root1, root2;
  
// stores Node information for constant time access
Node tree[MAXN];
  
// Keeps track the current Node while insertion
int currNode;
string s;
int ptr;
  
// Function to insert edge in tree
void insert(int currIndex)
{
    // Finding X, such that s[currIndex]
    // + X + s[currIndex] is palindrome.
    int temp = currNode;
  
    while (true)
    {
        int currLength = tree[temp].length;
        if (currIndex - currLength >= 1 &&
            (s[currIndex] == s[currIndex -
             currLength - 1]))
                        break;
  
        temp = tree[temp].suffixEdge;
    }
  
    // Check if s[currIndex] + X +
    // s[currIndex] is already Present in tree.
    if (tree[temp].insertionEdge[s[currIndex] -
        'a'] != 0)
    {
        currNode =
        tree[temp].insertionEdge[s[currIndex]
                   - 'a'];
  
        return;
    }
  
    // Else Create new node;
    ptr++;
  
    tree[temp].insertionEdge[s[currIndex]
               - 'a'] = ptr;
  
    tree[ptr].end = currIndex;
  
    tree[ptr].length = tree[temp].length + 2;
  
    tree[ptr].start = tree[ptr].end -
                      tree[ptr].length + 1;
  
    // Setting suffix edge for newly Created Node.
  
    currNode = ptr;
    temp = tree[temp].suffixEdge;
  
    // Longest Palindromic suffix for a
    // string of length 1 is a Null string.
    if (tree[currNode].length == 1) {
        tree[currNode].suffixEdge = 2;
        return;
    }
  
    // Else
    while (true) {
        int currLength = tree[temp].length;
  
        if (currIndex - currLength >= 1 &&
            (s[currIndex] ==
             s[currIndex - currLength - 1]))
                break;
  
        temp = tree[temp].suffixEdge;
    }
  
    tree[currNode].suffixEdge =
        tree[temp].insertionEdge[s[currIndex] - 'a'];
}
  
// Driver code
int main()
{
    // Imaginary root's suffix edge points to
    // itself, since for an imaginary string
    // of length = -1 has an imaginary suffix
    // string. Imaginary root.
    root1.length = -1;
    root1.suffixEdge = 1;
  
    // NULL root's suffix edge points to
    // Imaginary root, since for a string
    // of length = 0 has an imaginary suffix string.
    root2.length = 0;
    root2.suffixEdge = 1;
  
    tree[1] = root1;
    tree[2] = root2;
  
    ptr = 2;
    currNode = 1;
    s = "forgeeksskeegfor";
    for (int i = 0; i < s.size(); i++)
            insert(i);
  
    // last will be the index of our last substring
    int last = ptr;
  
    for (int i = tree[last].start;
         i <= tree[last].end; i++)
                cout << s[i];
  
    return 0;
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 code for Longest Palindromic 
# substring using Palindromic Tree 
# data structure 
  
class Node: 
      
    def __init__(self, length = None
                       suffixEdge = None):
          
        # store start and end indexes 
        # of current Node inclusively 
        self.start = None
        self.end = None
          
        # Stores length of substring 
        self.length = length 
  
        # stores insertion Node for all
        # characters a-z 
        self.insertionEdge = [0] * 26
  
        # stores the Maximum Palindromic 
        # Suffix Node for the current Node 
        self.suffixEdge = suffixEdge 
  
# Function to insert edge in tree 
def insert(currIndex): 
      
    global currNode, ptr
      
    # Finding X, such that s[currIndex] 
    # + X + s[currIndex] is palindrome. 
    temp = currNode 
  
    while True
      
        currLength = tree[temp].length 
        if (currIndex - currLength >= 1 and
           (s[currIndex] == s[currIndex -
            currLength - 1])): 
            break
  
        temp = tree[temp].suffixEdge 
  
    # Check if s[currIndex] + X + 
    # s[currIndex] is already Present in tree. 
    if tree[temp].insertionEdge[ord(s[currIndex]) - 
                                ord('a')] != 0
      
        currNode = tree[temp].insertionEdge[ord(s[currIndex]) - 
                                            ord('a')] 
        return
      
    # Else Create new node 
    ptr += 1
  
    tree[temp].insertionEdge[ord(s[currIndex]) - 
                             ord('a')] = ptr 
  
    tree[ptr].end = currIndex 
  
    tree[ptr].length = tree[temp].length + 2
  
    tree[ptr].start = (tree[ptr].end - 
                       tree[ptr].length + 1)
  
    # Setting suffix edge for newly Created Node. 
    currNode = ptr 
    temp = tree[temp].suffixEdge 
  
    # Longest Palindromic suffix for a 
    # string of length 1 is a Null string. 
    if tree[currNode].length == 1
        tree[currNode].suffixEdge = 2
        return
  
    # Else 
    while True
        currLength = tree[temp].length 
  
        if (currIndex - currLength >= 1 and
            s[currIndex] == s[currIndex - 
                              currLength - 1]): 
            break
  
        temp = tree[temp].suffixEdge 
  
    tree[currNode].suffixEdge = \
    tree[temp].insertionEdge[ord(s[currIndex]) - ord('a')] 
  
# Driver code 
if __name__ == "__main__":
      
    MAXN = 1000
      
    # Imaginary root's suffix edge points to 
    # itself, since for an imaginary string 
    # of length = -1 has an imaginary suffix 
    # string. Imaginary root.
    root1 = Node(-1, 1
  
    # NULL root's suffix edge points to 
    # Imaginary root, since for a string of 
    # length = 0 has an imaginary suffix string. 
    root2 = Node(0, 1)
      
    # Stores Node information for 
    # constant time access 
    tree = [Node() for i in range(MAXN)] 
      
    # Keeps track the Current Node 
    # while insertion 
    currNode, ptr = 1, 2
      
    tree[1] = root1 
    tree[2] = root2 
  
    s = "forgeeksskeegfor"
    for i in range(0, len(s)): 
        insert(i) 
  
    # last will be the index of our
    # last substring 
    last = ptr 
    for i in range(tree[last].start,
                   tree[last].end + 1): 
        print(s[i], end = "") 
  
# This code is contributed by Rituraj Jain

chevron_right


Output:

geeksskeeg


My Personal Notes arrow_drop_up

A Coding Enthusiast Rails Developer

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : rituraj_jain