Open In App
Related Articles

Largest rectangle that can be inscribed in a semicircle

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a semicircle of radius r, we have to find the largest rectangle that can be inscribed in the semicircle, with base lying on the diameter.
Examples: 
 

Input : r = 4
Output : 16

Input : r = 5 
Output :25

 

 

Let r be the radius of the semicircle, x one half of the base of the rectangle, and y the height of the rectangle. We want to maximize the area, A = 2xy. 
So from the diagram we have, 
y = ?(r^2 – x^2) 
So, A = 2*x*(?(r^2 – x^2)), or dA/dx = 2*?(r^2 – x^2) -2*x^2/?(r^2 – x^2) 
Setting this derivative equal to 0 and solving for x, 
dA/dx = 0 
or, 2*?(r^2 – x^2) – 2*x^2/?(r^2 – x^2) = 0 
2r^2 – 4x^2 = 0 
x = r/?2
This is the maximum of the area as, 
dA/dx > 0 when x > r/?2 
and, dA/dx < 0 when x > r/?2
Since y =?(r^2 – x^2) we then have
y = r/?2
Thus, the base of the rectangle has length = r/?2 and its height has length ?2*r/2
So, Area, A=r^2
 

C++




// C++ Program to find the
// the biggest rectangle
// which can be inscribed
// within the semicircle
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the area
// of the biggest rectangle
float rectanglearea(float r)
{
 
    // the radius cannot be negative
    if (r < 0)
        return -1;
 
    // area of the rectangle
    float a = r * r;
 
    return a;
}
 
// Driver code
int main()
{
    float r = 5;
    cout << rectanglearea(r) << endl;
    return 0;
}


Java




// Java Program to find the
// the biggest rectangle
// which can be inscribed
// within the semicircle
class GFG
{
 
// Function to find the area
// of the biggest rectangle
static float rectanglearea(float r)
{
 
// the radius cannot be negative
if (r < 0)
    return -1;
 
// area of the rectangle
float a = r * r;
 
return a;
}
 
// Driver code
public static void main(String[] args)
{
    float r = 5;
    System.out.println((int)rectanglearea(r));
}
}
 
// This code is contributed
// by ChitraNayal


Python 3




# Python 3 Program to find the
# the biggest rectangle
# which can be inscribed
# within the semicircle
 
# Function to find the area
# of the biggest rectangle
def rectanglearea(r) :
 
    # the radius cannot
    # be negative
    if r < 0 :
        return -1
 
    # area of the rectangle
    a = r * r
 
    return a
 
# Driver Code
if __name__ == "__main__" :
 
    r = 5
 
    # function calling
    print(rectanglearea(r))
 
# This code is contributed
# by ANKITRAI1


C#




// C# Program to find the
// the biggest rectangle
// which can be inscribed
// within the semicircle
using System;
 
class GFG
{
 
// Function to find the area
// of the biggest rectangle
static float rectanglearea(float r)
{
 
// the radius cannot be negative
if (r < 0)
    return -1;
 
// area of the rectangle
float a = r * r;
 
return a;
}
 
// Driver code
public static void Main()
{
    float r = 5;
    Console.Write((int)rectanglearea(r));
}
}
 
// This code is contributed
// by ChitraNayal


PHP




<?php
// PHP Program to find the
// the biggest rectangle
// which can be inscribed
// within the semicircle
 
// Function to find the area
// of the biggest rectangle
function rectanglearea($r)
{
 
    // the radius cannot
    // be negative
    if ($r < 0)
        return -1;
 
    // area of the rectangle
    $a = $r * $r;
 
    return $a;
}
 
// Driver code
$r = 5;
echo rectanglearea($r)."\n";
 
// This code is contributed
// by ChitraNayal
?>


Javascript




<script>
 
// javascript Program to find the
// the biggest rectangle
// which can be inscribed
// within the semicircle
 
// Function to find the area
// of the biggest rectangle
function rectanglearea(r)
{
 
    // the radius cannot be negative
    if (r < 0)
        return -1;
     
    // area of the rectangle
    var a = r * r;
     
    return a;
}
 
// Driver code
 
var r = 5;
document.write(parseInt(rectanglearea(r)));
 
// This code is contributed by Amit Katiyar
 
</script>


OUTPUT :  

25

Time Complexity: O(1)
Auxiliary Space: O(1)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 09 Jun, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials