Given a semicircle with radius **r**, we have to find the largest triangle that can be inscribed in the semicircle, with base lying on the diameter.

**Examples:**

Input: r = 5 Output: 25 Input: r = 8 Output: 64

**Approach**: From the figure, we can clearly understand the biggest triangle that can be inscribed in the semicircle has height **r**. Also, we know the base has length **2r**. So the triangle is an isosceles triangle.

So, Area

A: = (base * height)/2 =(2r * r)/2 = r^2

**Below is the implementation of above approach**:

## C++

`// C++ Program to find the biggest triangle ` `// which can be inscribed within the semicircle ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `// Function to find the area ` `// of the triangle ` `float` `trianglearea(` `float` `r) ` `{ ` ` ` ` ` `// the radius cannot be negative ` ` ` `if` `(r < 0) ` ` ` `return` `-1; ` ` ` ` ` `// area of the triangle ` ` ` `return` `r * r; ` `} ` ` ` `// Driver code ` `int` `main() ` `{ ` ` ` `float` `r = 5; ` ` ` `cout << trianglearea(r) << endl; ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

## Java

`// Java Program to find the biggest triangle ` `// which can be inscribed within the semicircle ` `import` `java.io.*; ` ` ` `class` `GFG { ` ` ` ` ` `// Function to find the area ` `// of the triangle ` `static` `float` `trianglearea(` `float` `r) ` `{ ` ` ` ` ` `// the radius cannot be negative ` ` ` `if` `(r < ` `0` `) ` ` ` `return` `-` `1` `; ` ` ` ` ` `// area of the triangle ` ` ` `return` `r * r; ` `} ` ` ` `// Driver code ` ` ` ` ` ` ` `public` `static` `void` `main (String[] args) { ` ` ` `float` `r = ` `5` `; ` ` ` `System.out.println( trianglearea(r)); ` ` ` `} ` `} ` `// This code is contributed ` `// by chandan_jnu. ` |

*chevron_right*

*filter_none*

## Python 3

`# Python 3 Program to find the biggest triangle ` `# which can be inscribed within the semicircle ` ` ` `# Function to find the area ` `# of the triangle ` `def` `trianglearea(r) : ` ` ` ` ` `# the radius cannot be negative ` ` ` `if` `r < ` `0` `: ` ` ` `return` `-` `1` ` ` ` ` `# area of the triangle ` ` ` `return` `r ` `*` `r ` ` ` ` ` `# Driver Code ` `if` `__name__ ` `=` `=` `"__main__"` `: ` ` ` ` ` `r ` `=` `5` ` ` `print` `(trianglearea(r)) ` ` ` `# This code is contributed by ANKITRAI1 ` |

*chevron_right*

*filter_none*

## C#

`// C# Program to find the biggest ` `// triangle which can be inscribed ` `// within the semicircle ` `using` `System; ` ` ` `class` `GFG ` `{ ` ` ` `// Function to find the area ` `// of the triangle ` `static` `float` `trianglearea(` `float` `r) ` `{ ` ` ` ` ` `// the radius cannot be negative ` ` ` `if` `(r < 0) ` ` ` `return` `-1; ` ` ` ` ` `// area of the triangle ` ` ` `return` `r * r; ` `} ` ` ` `// Driver code ` `public` `static` `void` `Main () ` `{ ` ` ` `float` `r = 5; ` ` ` `Console.Write(trianglearea(r)); ` `} ` `} ` ` ` `// This code is contributed ` `// by ChitraNayal ` |

*chevron_right*

*filter_none*

## PHP

`<?php ` `// PHP Program to find the biggest ` `// triangle which can be inscribed ` `// within the semicircle ` ` ` `// Function to find the area ` `// of the triangle ` `function` `trianglearea(` `$r` `) ` `{ ` ` ` ` ` `// the radius cannot be negative ` ` ` `if` `(` `$r` `< 0) ` ` ` `return` `-1; ` ` ` ` ` `// area of the triangle ` ` ` `return` `$r` `* ` `$r` `; ` `} ` ` ` `// Driver code ` `$r` `= 5; ` `echo` `trianglearea(` `$r` `); ` ` ` `// This code is contributed ` `// by inder_verma ` `?> ` |

*chevron_right*

*filter_none*

**Output:**

25

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.

## Recommended Posts:

- Largest ellipse that can be inscribed within a rectangle which in turn is inscribed within a semicircle
- Area of a circle inscribed in a rectangle which is inscribed in a semicircle
- Largest square that can be inscribed within a hexagon which is inscribed within an equilateral triangle
- Largest rectangle that can be inscribed in a semicircle
- Largest square that can be inscribed in a semicircle
- Largest trapezoid that can be inscribed in a semicircle
- Area of largest Circle that can be inscribed in a SemiCircle
- Biggest Reuleaux Triangle inscribed within a Square inscribed in an equilateral triangle
- Biggest Reuleaux Triangle inscirbed within a square inscribed in a semicircle
- Largest right circular cylinder that can be inscribed within a cone which is in turn inscribed within a cube
- Largest right circular cone that can be inscribed within a sphere which is inscribed within a cube
- Largest sphere that can be inscribed in a right circular cylinder inscribed in a frustum
- Largest sphere that can be inscribed within a cube which is in turn inscribed within a right circular cone
- Area of a triangle inscribed in a rectangle which is inscribed in an ellipse
- Area of a square inscribed in a circle which is inscribed in an equilateral triangle
- Biggest Reuleaux Triangle inscribed within a square which is inscribed within an ellipse
- Biggest Reuleaux Triangle inscribed within a square which is inscribed within a hexagon
- Largest triangle that can be inscribed in an ellipse
- Area of largest triangle that can be inscribed within a rectangle
- Largest hexagon that can be inscribed within an equilateral triangle

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.