Inversion Count for an array indicates – how far (or close) the array is from being sorted. If the array is already sorted then the inversion count is 0. If the array is sorted in the reverse order that inversion count is the maximum.
Two elements a[i] and a[j] form an inversion if a[i] > a[j] and i < j. For simplicity, we may assume that all elements are unique.
Example:
Input: arr[] = {8, 4, 2, 1}
Output: 6
Explanation: Given array has six inversions: (8,4), (4,2), (8,2), (8,1), (4,1), (2,1).
Input: arr[] = {3, 1, 2}
Output: 2
Explanation: Given array has two inversions: (3,1), (3,2).
We have already discussed the below methods to solve inversion count:
- Naive and Modified Merge Sort
- Using AVL Tree
We recommend you to refer Binary Indexed Tree (BIT) before further reading this post.
Solution using BIT of size Θ(maxElement):
- Approach: Traverse through the array and for every index find the number of smaller elements on the right side of the array. This can be done using BIT. Sum up the counts for all indexes in the array and print the sum.
- Background on BIT:
- BIT basically supports two operations for an array arr[] of size n:
- Sum of elements till arr[i] in O(log n) time.
- Update an array element in O(log n) time.
- BIT is implemented using an array and works in form of trees. Note that there are two ways of looking at BIT as a tree.
- The sum operation where parent of index x is “x – (x & -x)”.
- The update operation where parent of index x is “x + (x & -x)”.
- Algorithm:
- Create a BIT, to find the count of the smaller elements in the BIT for a given number and also a variable result = 0.
- Traverse the array from end to start.
- For every index check how many numbers less than the current element are present in BIT and add it to the result
- To get the count of smaller elements, getSum() of BIT is used.
- In his basic idea, BIT is represented as an array of size equal to maximum element plus one. So that elements can be used as an index.
- After that we add the current element to the BIT[] by doing an update operation that updates the count of the current element from 0 to 1, and therefore updates ancestors of the current element in BIT (See update() in BIT for details).
Below is the implementation of the above approach:
C++
#include<bits/stdc++.h>
using namespace std;
int getSum( int BITree[], int index)
{
int sum = 0;
while (index > 0)
{
sum += BITree[index];
index -= index & (-index);
}
return sum;
}
void updateBIT( int BITree[], int n, int index, int val)
{
while (index <= n)
{
BITree[index] += val;
index += index & (-index);
}
}
int getInvCount( int arr[], int n)
{
int invcount = 0;
int maxElement = 0;
for ( int i=0; i<n; i++)
if (maxElement < arr[i])
maxElement = arr[i];
int BIT[maxElement+1];
for ( int i=1; i<=maxElement; i++)
BIT[i] = 0;
for ( int i=n-1; i>=0; i--)
{
invcount += getSum(BIT, arr[i]-1);
updateBIT(BIT, maxElement, arr[i], 1);
}
return invcount;
}
int main()
{
int arr[] = {8, 4, 2, 1};
int n = sizeof (arr)/ sizeof ( int );
cout << "Number of inversions are : " << getInvCount(arr,n);
return 0;
}
|
Java
class GFG
{
static int getSum( int [] BITree, int index)
{
int sum = 0 ;
while (index > 0 )
{
sum += BITree[index];
index -= index & (-index);
}
return sum;
}
static void updateBIT( int [] BITree, int n,
int index, int val)
{
while (index <= n)
{
BITree[index] += val;
index += index & (-index);
}
}
static int getInvCount( int [] arr, int n)
{
int invcount = 0 ;
int maxElement = 0 ;
for ( int i = 0 ; i < n; i++)
if (maxElement < arr[i])
maxElement = arr[i];
int [] BIT = new int [maxElement + 1 ];
for ( int i = 1 ; i <= maxElement; i++)
BIT[i] = 0 ;
for ( int i = n - 1 ; i >= 0 ; i--)
{
invcount += getSum(BIT, arr[i] - 1 );
updateBIT(BIT, maxElement, arr[i], 1 );
}
return invcount;
}
public static void main (String[] args)
{
int []arr = { 8 , 4 , 2 , 1 };
int n = arr.length;
System.out.println( "Number of inversions are : " +
getInvCount(arr,n));
}
}
|
Python3
def getSum( BITree, index):
sum = 0
while (index > 0 ):
sum + = BITree[index]
index - = index & ( - index)
return sum
def updateBIT(BITree, n, index, val):
while (index < = n):
BITree[index] + = val
index + = index & ( - index)
def getInvCount(arr, n):
invcount = 0
maxElement = max (arr)
BIT = [ 0 ] * (maxElement + 1 )
for i in range (n - 1 , - 1 , - 1 ):
invcount + = getSum(BIT, arr[i] - 1 )
updateBIT(BIT, maxElement, arr[i], 1 )
return invcount
if __name__ = = "__main__" :
arr = [ 8 , 4 , 2 , 1 ]
n = 4
print ( "Inversion Count : " ,
getInvCount(arr, n))
|
C#
using System;
class GFG
{
static int getSum( int []BITree, int index)
{
int sum = 0;
while (index > 0)
{
sum += BITree[index];
index -= index & (-index);
}
return sum;
}
static void updateBIT( int []BITree, int n,
int index, int val)
{
while (index <= n)
{
BITree[index] += val;
index += index & (-index);
}
}
static int getInvCount( int []arr, int n)
{
int invcount = 0;
int maxElement = 0;
for ( int i = 0; i < n; i++)
if (maxElement < arr[i])
maxElement = arr[i];
int [] BIT = new int [maxElement + 1];
for ( int i = 1; i <= maxElement; i++)
BIT[i] = 0;
for ( int i = n - 1; i >= 0; i--)
{
invcount += getSum(BIT, arr[i] - 1);
updateBIT(BIT, maxElement, arr[i], 1);
}
return invcount;
}
static void Main()
{
int []arr = {8, 4, 2, 1};
int n = arr.Length;
Console.WriteLine( "Number of inversions are : " +
getInvCount(arr,n));
}
}
|
PHP
<?php
function getSum( $BITree , $index )
{
$sum = 0;
while ( $index > 0)
{
$sum += $BITree [ $index ];
$index -= $index & (- $index );
}
return $sum ;
}
function updateBIT(& $BITree , $n , $index , $val )
{
while ( $index <= $n )
{
$BITree [ $index ] += $val ;
$index += $index & (- $index );
}
}
function getInvCount( $arr , $n )
{
$invcount = 0;
$maxElement = 0;
for ( $i =0; $i < $n ; $i ++)
if ( $maxElement < $arr [ $i ])
$maxElement = $arr [ $i ];
$BIT = array_fill (0, $maxElement +1,0);
for ( $i = $n -1; $i >=0; $i --)
{
$invcount += getSum( $BIT , $arr [ $i ]-1);
updateBIT( $BIT , $maxElement , $arr [ $i ], 1);
}
return $invcount ;
}
$arr = array (8, 4, 2, 1);
$n = count ( $arr );
print ( "Number of inversions are : " .getInvCount( $arr , $n ));
?>
|
Javascript
<script>
function getSum(BITree , index)
{
var sum = 0;
while (index > 0)
{
sum += BITree[index];
index -= index & (-index);
}
return sum;
}
function updateBIT(BITree , n, index , val)
{
while (index <= n)
{
BITree[index] += val;
index += index & (-index);
}
}
function getInvCount(arr , n)
{
var invcount = 0;
var maxElement = 0;
for (i = 0; i < n; i++)
if (maxElement < arr[i])
maxElement = arr[i];
var BIT = Array.from({length: maxElement + 1}, (_, i) => 0);
for (i = 1; i <= maxElement; i++)
BIT[i] = 0;
for (i = n - 1; i >= 0; i--)
{
invcount += getSum(BIT, arr[i] - 1);
updateBIT(BIT, maxElement, arr[i], 1);
}
return invcount;
}
var arr = [8, 4, 2, 1];
var n = arr.length;
document.write( "Number of inversions are : " +
getInvCount(arr,n));
</script>
|
OutputNumber of inversions are : 6
Time Complexity :- The update function and getSum function runs for O(log(maximumelement)). The getSum function has to be run for every element in the array. So overall time complexity is : O(nlog(maximumelement)).
Auxiliary space : O(maxElement), space required for the BIT is an array of the size of the largest element.
Better solution using BIT of size Θ(n):
Approach: Traverse through the array and for every index find the number of smaller elements on its right side of the array. This can be done using BIT. Sum up the counts for all indexes in the array and print the sum. The approach remains the same but the problem with the previous approach is that it doesn’t work for negative numbers as the index cannot be negative. The idea is to convert the given array to an array with values from 1 to n and the relative order of smaller and greater elements remains the same.
Example:
arr[] = {7, -90, 100, 1}
It gets converted to,
arr[] = {3, 1, 4 ,2 }
as -90 < 1 < 7 < 100.
Explanation: Make a BIT array of a number of
elements instead of a maximum element. Changing
element will not have any change in the answer
as the greater elements remain greater and at the
same position.
Algorithm:
- Create a BIT, to find the count of the smaller elements in the BIT for a given number and also a variable result = 0.
- The previous solution does not work for arrays containing negative elements. So, convert the array into an array containing relative numbering of elements,i.e make a copy of the original array and then sort the copy of the array and replace the elements in the original array with the indices of the same elements in the sorted array.
For example, if the array is {-3, 2, 0} then the array gets converted to {1, 3, 2} - Traverse the array from end to start.
- For every index check how many numbers less than the current element are present in BIT and add it to the result
Below is the implementation of the above approach:
C++
#include<bits/stdc++.h>
using namespace std;
int getSum( int BITree[], int index)
{
int sum = 0;
while (index > 0)
{
sum += BITree[index];
index -= index & (-index);
}
return sum;
}
void updateBIT( int BITree[], int n, int index, int val)
{
while (index <= n)
{
BITree[index] += val;
index += index & (-index);
}
}
void convert( int arr[], int n)
{
int temp[n];
for ( int i=0; i<n; i++)
temp[i] = arr[i];
sort(temp, temp+n);
for ( int i=0; i<n; i++)
{
arr[i] = lower_bound(temp, temp+n, arr[i]) - temp + 1;
}
}
int getInvCount( int arr[], int n)
{
int invcount = 0;
convert(arr, n);
int BIT[n+1];
for ( int i=1; i<=n; i++)
BIT[i] = 0;
for ( int i=n-1; i>=0; i--)
{
invcount += getSum(BIT, arr[i]-1);
updateBIT(BIT, n, arr[i], 1);
}
return invcount;
}
int main()
{
int arr[] = {8, 4, 2, 1};
int n = sizeof (arr)/ sizeof ( int );
cout << "Number of inversions are : " << getInvCount(arr,n);
return 0;
}
|
Java
import java.util.*;
class GFG{
static int getSum( int BITree[],
int index)
{
int sum = 0 ;
while (index > 0 )
{
sum += BITree[index];
index -= index & (-index);
}
return sum;
}
static void updateBIT( int BITree[], int n,
int index, int val)
{
while (index <= n)
{
BITree[index] += val;
index += index & (-index);
}
}
static void convert( int arr[],
int n)
{
int []temp = new int [n];
for ( int i = 0 ; i < n; i++)
temp[i] = arr[i];
Arrays.sort(temp);
for ( int i = 0 ; i < n; i++)
{
arr[i] =lower_bound(temp, 0 ,
n, arr[i]) + 1 ;
}
}
static int lower_bound( int [] a, int low,
int high, int element)
{
while (low < high)
{
int middle = low +
(high - low) / 2 ;
if (element > a[middle])
low = middle + 1 ;
else
high = middle;
}
return low;
}
static int getInvCount( int arr[],
int n)
{
int invcount = 0 ;
convert(arr, n);
int []BIT = new int [n + 1 ];
for ( int i = 1 ; i <= n; i++)
BIT[i] = 0 ;
for ( int i = n - 1 ; i >= 0 ; i--)
{
invcount += getSum(BIT,
arr[i] - 1 );
updateBIT(BIT, n, arr[i], 1 );
}
return invcount;
}
public static void main(String[] args)
{
int arr[] = { 8 , 4 , 2 , 1 };
int n = arr.length;
System.out.print( "Number of inversions are : " +
getInvCount(arr, n));
}
}
|
Python3
from bisect import bisect_left as lower_bound
def getSum(BITree, index):
sum = 0
while (index > 0 ):
sum + = BITree[index]
index - = index & ( - index)
return sum
def updateBIT(BITree, n, index, val):
while (index < = n):
BITree[index] + = val
index + = index & ( - index)
def convert(arr, n):
temp = [ 0 ] * (n)
for i in range (n):
temp[i] = arr[i]
temp = sorted (temp)
for i in range (n):
arr[i] = lower_bound(temp, arr[i]) + 1
def getInvCount(arr, n):
invcount = 0
convert(arr, n)
BIT = [ 0 ] * (n + 1 )
for i in range (n - 1 , - 1 , - 1 ):
invcount + = getSum(BIT, arr[i] - 1 )
updateBIT(BIT, n, arr[i], 1 )
return invcount
if __name__ = = '__main__' :
arr = [ 8 , 4 , 2 , 1 ]
n = len (arr)
print ( "Number of inversions are : " ,getInvCount(arr, n))
|
C#
using System;
class GFG{
static int getSum( int []BITree,
int index)
{
int sum = 0;
while (index > 0)
{
sum += BITree[index];
index -= index & (-index);
}
return sum;
}
static void updateBIT( int []BITree, int n,
int index, int val)
{
while (index <= n)
{
BITree[index] += val;
index += index & (-index);
}
}
static void convert( int []arr,
int n)
{
int []temp = new int [n];
for ( int i = 0; i < n; i++)
temp[i] = arr[i];
Array.Sort(temp);
for ( int i = 0; i < n; i++)
{
arr[i] =lower_bound(temp,0,
n, arr[i]) + 1;
}
}
static int lower_bound( int [] a, int low,
int high, int element)
{
while (low < high)
{
int middle = low +
(high - low) / 2;
if (element > a[middle])
low = middle + 1;
else
high = middle;
}
return low;
}
static int getInvCount( int []arr,
int n)
{
int invcount = 0;
convert(arr, n);
int []BIT = new int [n + 1];
for ( int i = 1; i <= n; i++)
BIT[i] = 0;
for ( int i = n - 1; i >= 0; i--)
{
invcount += getSum(BIT,
arr[i] - 1);
updateBIT(BIT, n,
arr[i], 1);
}
return invcount;
}
public static void Main(String[] args)
{
int []arr = {8, 4, 2, 1};
int n = arr.Length;
Console.Write( "Number of inversions are : " +
getInvCount(arr, n));
}
}
|
Javascript
<script>
function getSum(BITree,index)
{
let sum = 0;
while (index > 0)
{
sum += BITree[index];
index -= index & (-index);
}
return sum;
}
function updateBIT(BITree,n,index,val)
{
while (index <= n)
{
BITree[index] += val;
index += index & (-index);
}
}
function convert(arr, n)
{
let temp = new Array(n);
for (let i = 0; i < n; i++)
temp[i] = arr[i];
temp.sort( function (a, b){ return a - b;});
for (let i = 0; i < n; i++)
{
arr[i] =lower_bound(temp,0,
n, arr[i]) + 1;
}
}
function lower_bound(a,low,high,element)
{
while (low < high)
{
let middle = low +
Math.floor((high - low) / 2);
if (element > a[middle])
low = middle + 1;
else
high = middle;
}
return low;
}
function getInvCount(arr,n)
{
let invcount = 0;
convert(arr, n);
let BIT = new Array(n + 1);
for (let i = 1; i <= n; i++)
BIT[i] = 0;
for (let i = n - 1; i >= 0; i--)
{
invcount += getSum(BIT,
arr[i] - 1);
updateBIT(BIT, n, arr[i], 1);
}
return invcount;
}
let arr=[8, 4, 2, 1];
let n = arr.length;
document.write( "Number of inversions are : " +
getInvCount(arr, n));
</script>
|
OutputNumber of inversions are : 6
Time Complexity: The update function and getSum function runs for O(log(n)). The getSum function has to be run for every element in the array. So overall time complexity is O(nlog(n)).
Auxiliary Space: O(n).
Space required for the BIT is an array of the size n.
This article is contributed by Abhiraj Smit. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.