Given a number N, the task is to find the Nth Icositetragonal number.
An Icositetragonal number is a class of figurate number. It has a 24-sided polygon called Icositetragon. The N-th Icositetragonal number count’s the number of dots and all others dots are surrounding with a common sharing corner and make a pattern.
Examples:
Input: N = 2
Output: 24
Input: N = 6
Output: 336

Approach: The Nth icositetragonal number is given by the formula:

Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int Icositetragonal_num( int n)
{
return (22 * n * n - 20 * n) / 2;
}
int main()
{
int n = 3;
cout << Icositetragonal_num(n) << endl;
n = 10;
cout << Icositetragonal_num(n);
return 0;
}
|
Java
import java.util.*;
class GFG {
static int Icositetragonal_num( int n)
{
return ( 22 * n * n - 20 * n) / 2 ;
}
public static void main(String[] args)
{
int n = 3 ;
System.out.println(Icositetragonal_num(n));
n = 10 ;
System.out.println(Icositetragonal_num(n));
}
}
|
Python3
def Icositetragonal_num(n):
return ( 22 * n * n - 20 * n) / 2
n = 3
print ( int (Icositetragonal_num(n)))
n = 10
print ( int (Icositetragonal_num(n)))
|
C#
using System;
class GFG{
static int Icositetragonal_num( int n)
{
return (22 * n * n - 20 * n) / 2;
}
public static void Main( string [] args)
{
int n = 3;
Console.Write(Icositetragonal_num(n) + "\n" );
n = 10;
Console.Write(Icositetragonal_num(n) + "\n" );
}
}
|
Javascript
<script>
function Icositetragonal_num(n)
{
return (22 * n * n - 20 * n) / 2;
}
let n = 3;
document.write(Icositetragonal_num(n) + "</br>" );
n = 10;
document.write(Icositetragonal_num(n));
</script>
|
Time Complexity: O(1)
Auxiliary Space: O(1)
Reference: https://en.wikipedia.org/wiki/Polygonal_number
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
06 Apr, 2021
Like Article
Save Article