Open In App
Related Articles

Icositetragonal Number

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a number N, the task is to find the Nth Icositetragonal number. 

An Icositetragonal number is a class of figurate number. It has a 24-sided polygon called Icositetragon. The N-th Icositetragonal number count’s the number of dots and all others dots are surrounding with a common sharing corner and make a pattern.

Examples: 

Input: N = 2 
Output: 24

Input: N = 6 
Output: 336   

Approach: The Nth icositetragonal number is given by the formula: 

Tn = (22n^2 - 20n)/2

Below is the implementation of the above approach: 

C++




// C++ program to find nth
// Icositetragonal number
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find
// Icositetragonal number
int Icositetragonal_num(int n)
{
    // Formula to calculate nth
    // Icositetragonal number
    return (22 * n * n - 20 * n) / 2;
}
 
// Driver Code
int main()
{
    int n = 3;
 
    cout << Icositetragonal_num(n) << endl;
 
    n = 10;
 
    cout << Icositetragonal_num(n);
 
    return 0;
}


Java




// Java program to find nth
// icositetragonal number
import java.util.*;
 
class GFG {
     
// Function to find
// icositetragonal number
static int Icositetragonal_num(int n)
{
     
    // Formula to calculate nth
    // icositetragonal number
    return (22 * n * n - 20 * n) / 2;
}
 
// Driver code
public static void main(String[] args)
{
    int n = 3;
    System.out.println(Icositetragonal_num(n));
     
    n = 10;
    System.out.println(Icositetragonal_num(n));
}
}
 
// This code is contributed by offbeat


Python3




# Python3 program to find nth
# Icositetragonal number
 
# Function to find
# Icositetragonal number
def Icositetragonal_num(n):
     
    # Formula to calculate nth
    # Icositetragonal number
    return (22 * n * n - 20 * n) / 2
 
# Driver Code
n = 3
print(int(Icositetragonal_num(n)))
 
n = 10
print(int(Icositetragonal_num(n)))
 
# This code is contributed by divyeshrabadiya07


C#




// C# program to find nth
// icositetragonal number
using System;
 
class GFG{
     
// Function to find
// icositetragonal number
static int Icositetragonal_num(int n)
{
     
    // Formula to calculate nth
    // icositetragonal number
    return (22 * n * n - 20 * n) / 2;
}
 
// Driver code
public static void Main(string[] args)
{
    int n = 3;
    Console.Write(Icositetragonal_num(n) + "\n");
     
    n = 10;
    Console.Write(Icositetragonal_num(n) + "\n");
}
}
 
// This code is contributed by rutvik_56


Javascript




<script>
 
// Javascript program to find nth
// icositetragonal number
 
// Function to find
// icositetragonal number
function Icositetragonal_num(n)
{
     
    // Formula to calculate nth
    // icositetragonal number
    return (22 * n * n - 20 * n) / 2;
}
 
// Driver code
let n = 3;
document.write(Icositetragonal_num(n) + "</br>");
 
n = 10;
document.write(Icositetragonal_num(n));
     
// This code is contributed by Ankita saini
    
</script>


Output: 

69
1000

 

Time Complexity: O(1)

Auxiliary Space: O(1)

Reference: https://en.wikipedia.org/wiki/Polygonal_number


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 06 Apr, 2021
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials