Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

How to Get First Row of Pandas DataFrame?

  • Last Updated : 30 Nov, 2021

In this article, we will discuss how to get the first row of the pandas dataframe

Method 1: Using iloc[]

This method is used to access the row by using row numbers. We can get the first row by using 0 indexes.

Syntax:

dataframe.iloc[0]

where dataframe is the input dataframe

we can also provide the range index.

Syntax:

dataframe.iloc[:1]

Here the rows will be extracted from the start till the index -1 mentioned after the right side of :.

Example: Python code to get the first row of the dataframe by using iloc[] function

Python3




# import pandas module
import pandas as pd
 
# create dataframe with 3 columns
data = pd.DataFrame({
    "id": [7058, 7059, 7072, 7054],
    "name": ['sravan', 'jyothika', 'harsha', 'ramya'],
    "subjects": ['java', 'python', 'html/php', 'php/js']
}
)
 
# get first row using row position
print(data.iloc[0])
 
print("---------------")
 
# get first row using slice operator
print(data.iloc[:1])

Output:

id            7058
name        sravan
subjects      java
Name: 0, dtype: object
---------------
     id    name subjects
0  7058  sravan     java

Example 2: Get the first row for a particular column

Python3




# import pandas module
import pandas as pd
 
# create dataframe with 3 columns
data = pd.DataFrame({
    "id": [7058, 7059, 7072, 7054],
    "name": ['sravan', 'jyothika', 'harsha', 'ramya'],
    "subjects": ['java', 'python', 'html/php', 'php/js']
}
)
 
# get first row using row position
print(data['name'].iloc[0])
 
print("---------------")
 
# get first row using slice operator
print(data['subjects'].iloc[:1])

Output:

sravan
---------------
0    java
Name: subjects, dtype: object

Method 2 : Using head() function

This function will default return the first 5 rows of the dataframe. to get only first row we have to specify 1 

Syntax:

dataframe.head(1)

Example 1: Program to get the first row of the dataset

Python3




# import pandas module
import pandas as pd
 
# create dataframe with 3 columns
data = pd.DataFrame({
    "id": [7058, 7059, 7072, 7054],
    "name": ['sravan', 'jyothika', 'harsha', 'ramya'],
    "subjects": ['java', 'python', 'html/php', 'php/js']
}
)
 
# get first row using head() function
print(data.head(1))

Output:

 id    name subjects
0  7058  sravan     java

Example 2: Get the first row for a particular column

Python3




# import pandas module
import pandas as pd
 
# create dataframe with 3 columns
data = pd.DataFrame({
    "id": [7058, 7059, 7072, 7054],
    "name": ['sravan', 'jyothika', 'harsha', 'ramya'],
    "subjects": ['java', 'python', 'html/php', 'php/js']
}
)
 
# get first row using head() function
print(data['id'].head(1))

Output:

0    7058
Name: id, dtype: int64

Method 3 : Using loc() function

This method is used to get the first row with index function.

Syntax:

dataframe.loc[dataframe.index[0]]

where,

  • dataframe is the input dataframe
  • index is the function to get first row

Example: Program to get the first row of the dataset

Python3




# import pandas module
import pandas as pd
 
# create dataframe with 3 columns
data = pd.DataFrame({
    "id": [7058, 7059, 7072, 7054],
    "name": ['sravan', 'jyothika', 'harsha', 'ramya'],
    "subjects": ['java', 'python', 'html/php', 'php/js']
}
)
 
# get first row using loc() function
data.loc[data.index[0]]

Output:

id            7058
name        sravan
subjects      java
Name: 0, dtype: object

Method 4 : Using values() function

This will return the first row in the form of an array. Works similar to iloc().

Syntax:

dataframe.values[0]
dataframe.values[:1]

Example: Program to get first row of the dataset

Python3




# import pandas module
import pandas as pd
 
# create dataframe with 3 columns
data = pd.DataFrame({
    "id": [7058, 7059, 7072, 7054],
    "name": ['sravan', 'jyothika', 'harsha', 'ramya'],
    "subjects": ['java', 'python', 'html/php', 'php/js']
}
)
 
# get first row using loc() function
print(data.values[:1])
 
# get first row using loc() function
print(data.values[:1])
 
# get particular column
print(data['name'].values[:1])

Output:

[[7058 'sravan' 'java']]
[[7058 'sravan' 'java']]
['sravan']

Method 5: Using iat[] function

This function takes row and column index to display data in the dataframe

Syntax:

dataframe.iat[row_index, column_index]

where

  • dataframe is the input dataframe
  • row_index is the row number
  • column_index is the column number

Example: Program to get the first row of the dataset

Python3




# import pandas module
import pandas as pd
 
# create dataframe with 3 columns
data = pd.DataFrame({
    "id": [7058, 7059, 7072, 7054],
    "name": ['sravan', 'jyothika', 'harsha', 'ramya'],
    "subjects": ['java', 'python', 'html/php', 'php/js']
}
)
 
# get first row using iat() function of
# first row 2 nd column
print(data.iat[0, 1])
 
# get first row using iat() function of
# first row 1 st column
print(data.iat[0, 0])
 
# get first row using iat() function of
# first row 3 rd column
print(data.iat[0, 2])

Output:

sravan
7058
java

Method 6 : Using at[] function

This function takes column names along with a first-row index to display the first row of the dataframe.

Syntax:

dataframe.at[row_index, column_name]

where

  • dataframe is the input dataframe
  • row_index – 0 to get the first row
  • column_name is the name of the column

Example: Program to get the first row of the dataset

Python3




# import pandas module
import pandas as pd
 
# create dataframe with 3 columns
data = pd.DataFrame({
    "id": [7058, 7059, 7072, 7054],
    "name": ['sravan', 'jyothika', 'harsha', 'ramya'],
    "subjects": ['java', 'python', 'html/php', 'php/js']
}
)
 
# get first row using iat() function of
# first row 2 nd column
print(data.at[0, 'name'])
 
# get first row using iat() function of
# first row 1 st column
print(data.at[0, 'id'])
 
# get first row using iat() function of
# first row 3 rd column
print(data.at[0, 'subjects'])

Output:

sravan
7058
java


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!