Skip to content
Related Articles

Related Articles

Get first n records of a Pandas DataFrame
  • Last Updated : 05 Aug, 2020

Let us see how to fetch the first n records of a Pandas DataFrame. Lets first make a dataframe :




# Import Required Library
import pandas as pd
  
# Create a dictionary for the dataframe
dict = {'Name' : ['Sumit Tyagi', 'Sukritin',
                  'Akriti Goel', 'Sanskriti',
                  'Abhishek Jain'],
        'Age':[22, 20, 45, 21, 22],
        'Marks':[90, 84, 33, 87, 82]}
  
# Converting Dictionary to Pandas Dataframe
df = pd.DataFrame(dict)
  
# Print Dataframe
print(df)

Output : 
 

Method 1 : Using head() method. Use pandas.DataFrame.head(n) to get the first n rows of the DataFrame. It takes one optional argument n (number of rows you want to get from the start). By default n = 5, it return first 5 rows if value of n is not passed to the method.




# Getting first 3 rows from df
df_first_3 = df.head(3)
  
# Printing df_first_3
print(df_first_3)

Output : 
 



Method 2 : Using pandas.DataFrame.iloc(). Use pandas.DataFrame.iloc() to get the first n rows. It is similar to the list slicing.




# Getting first 3 rows from df
df_first_3 = df.iloc[:3]
  
# Printing df_first_3
print(df_first_3)

Output :

Method 3 : Display first n records of specific columns




# Getting first 2 rows of columns Age and Marks from df
df_first_2 = df[['Age', 'Marks']].head(2)
  
# Printing df_first_2
print(df_first_2)

Output : 
 

Method 4 : Display first n records from last n columns. Display first n records for the last n columns using pandas.DataFrame.iloc()




# Getting first n rows and last n columns from df
df_first_2_row_last_2_col = df.iloc[:2, -2:]
  
# Printing df_first_2_row_last_2_col
print(df_first_2_row_last_2_col)

Output :

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :