Flatten Binary Tree in order of Zig Zag traversal

Given a Binary Tree, the task is to flatten it in order of ZigZag traversal of the tree. In the flattened binary tree, the left node of all the nodes must be NULL.

Examples:

Input: 
          1 
        /   \ 
       5     2 
      / \   / \ 
     6   4 9   3 
Output: 1 2 5 6 4 9 3

Input:
      1
       \
        2
         \
          3
           \
            4
             \
              5
Output: 1 2 3 4 5

Approach: We will solve this problem by simulating the ZigZag traversal of Binary Tree.
Algorithm:

  1. Create two stacks, “c_lev” and “n_lev” and to store the nodes of current and next level Binary tree.
  2. Create a variable “prev” and initialise it by parent node.
  3. Push right and left children of parent in the c_lev stack.
  4. Apply ZigZag traversal. Lets say “curr” is top most element in “c_lev”. Then,
    • If ‘curr’ is NULL, continue.
    • Else push curr->left and curr->right on the stack “n_lev” in appropriate order. If we are performing left to right traversal then curr->left is pushed first else curr->right is pushed first.
    • Set prev = curr.

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Node of the binary tree
struct node {
    int data;
    node* left;
    node* right;
    node(int data)
    {
        this->data = data;
        left = NULL;
        right = NULL;
    }
};
  
// Function to flatten Binary tree
void flatten(node* parent)
{
    // Queue to store node
    // for BFS
    stack<node *> c_lev, n_lev;
  
    c_lev.push(parent->left);
    c_lev.push(parent->right);
  
    bool lev = 1;
    node* prev = parent;
  
    // Code for BFS
    while (c_lev.size()) {
  
        // Size of queue
        while (c_lev.size()) {
  
            // Front most node in
            // queue
            node* curr = c_lev.top();
            c_lev.pop();
  
            // Base case
            if (curr == NULL)
                continue;
            prev->right = curr;
            prev->left = NULL;
            prev = curr;
  
            // Pushing new elements
            // in queue
            if (!lev)
                n_lev.push(curr->left);
            n_lev.push(curr->right);
            if (lev)
                n_lev.push(curr->left);
        }
        lev = (!lev);
        c_lev = n_lev;
        while (n_lev.size())
            n_lev.pop();
    }
  
    prev->left = NULL;
    prev->right = NULL;
}
  
// Function to print flattened
// binary tree
void print(node* parent)
{
    node* curr = parent;
    while (curr != NULL)
        cout << curr->data << " ", curr = curr->right;
}
  
// Driver code
int main()
{
    node* root = new node(1);
    root->left = new node(5);
    root->right = new node(2);
    root->left->left = new node(6);
    root->left->right = new node(4);
    root->right->left = new node(9);
    root->right->right = new node(3);
  
    // Calling required functions
    flatten(root);
  
    print(root);
  
    return 0;
}

chevron_right


Output:

1 2 5 6 4 9 3

Time Complexity: O(N)
Space Complexity: O(N) where N is the size of Binary Tree.



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.




Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.