Given a function
and two integers a and b. The task is to find the integrand of the given function from lower limit(a) to the upper limit(b) using Weedle’s Rule.
The given function is:

Examples:
Input: a = 0, b = 6
Output: 1.373448
Input: a = 10, b = 13
Output: f(x) = 0.022897
Approach:
The integration of any function
using Weedle’s Formula is given by:
= 
where,
h = 
and i = [0, 6]






Below are the steps:
- Find the value of h from the above formula i.e., h =
.
- Find the value from
to
and calculate the value from
to 
- Substitute the above values in Weedle’s Formula to find the integral value.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
float y( float x)
{
float num = 1;
float denom = 1.0 + x * x;
return num / denom;
}
float WeedleRule( float a, float b)
{
double h = (b - a) / 6;
float sum = 0;
sum = sum + (((3 * h) / 10) * (y(a)
+ y(a + 2 * h)
+ 5 * y(a + h)
+ 6 * y(a + 3 * h)
+ y(a + 4 * h)
+ 5 * y(a + 5 * h)
+ y(a + 6 * h)));
return sum;
}
int main()
{
float a = 0, b = 6;
cout<< "f(x) = " << fixed << WeedleRule(a, b);
return 0;
}
|
C
#include <math.h>
#include <stdio.h>
float y( float x)
{
float num = 1;
float denom = 1.0 + x * x;
return num / denom;
}
float WeedleRule( float a, float b)
{
double h = (b - a) / 6;
float sum = 0;
sum = sum + (((3 * h) / 10) * (y(a)
+ y(a + 2 * h)
+ 5 * y(a + h)
+ 6 * y(a + 3 * h)
+ y(a + 4 * h)
+ 5 * y(a + 5 * h)
+ y(a + 6 * h)));
return sum;
}
int main()
{
float a = 0, b = 6;
printf ( "f(x) = %f" , WeedleRule(a, b));
return 0;
}
|
Java
import java.util.*;
class GFG{
static float y( float x)
{
float num = 1 ;
float denom = ( float ) 1.0 + x * x;
return num / denom;
}
static float WeedleRule( float a, float b)
{
float h = (b - a) / 6 ;
float sum = 0 ;
sum = sum + ((( 3 * h) / 10 ) * (y(a)
+ y(a + 2 * h)
+ 5 * y(a + h)
+ 6 * y(a + 3 * h)
+ y(a + 4 * h)
+ 5 * y(a + 5 * h)
+ y(a + 6 * h)));
return sum;
}
public static void main(String args[])
{
float a = 0 , b = 6 ;
float num=WeedleRule(a, b);
System.out.format( "f(x) = " + "%.6f" , num);
}
}
|
Python3
def y(x):
num = 1 ;
denom = float ( 1.0 + x * x);
return num / denom;
def WeedleRule(a, b):
h = (b - a) / 6 ;
sum = 0 ;
sum = sum + ((( 3 * h) / 10 ) * (y(a)
+ y(a + 2 * h)
+ 5 * y(a + h)
+ 6 * y(a + 3 * h)
+ y(a + 4 * h)
+ 5 * y(a + 5 * h)
+ y(a + 6 * h)));
return sum ;
if __name__ = = '__main__' :
a = 0 ;
b = 6 ;
num = WeedleRule(a, b);
print ( "f(x) = {0:.6f}" . format (num));
|
C#
using System;
class GFG{
static float y( float x)
{
float num = 1;
float denom = ( float )1.0 + x * x;
return num / denom;
}
static float WeedleRule( float a, float b)
{
float h = (b - a) / 6;
float sum = 0;
sum = sum + (((3 * h) / 10) * (y(a)
+ y(a + 2 * h)
+ 5 * y(a + h)
+ 6 * y(a + 3 * h)
+ y(a + 4 * h)
+ 5 * y(a + 5 * h)
+ y(a + 6 * h)));
return sum;
}
public static void Main()
{
float a = 0, b = 6;
float num=WeedleRule(a, b);
Console.Write( "f(x) = " +num);
}
}
|
Javascript
<script>
function y(x)
{
let num = 1;
let denom = 1.0 + x * x;
return num / denom;
}
function WeedleRule(a, b)
{
let h = (b - a) / 6;
let sum = 0;
sum = sum + (((3 * h) / 10) *
(y(a) + y(a + 2 * h) + 5 * y(a + h) +
6 * y(a + 3 * h) + y(a + 4 * h) +
5 * y(a + 5 * h) + y(a + 6 * h)));
return sum.toFixed(6);
}
let a = 0, b = 6;
let num = WeedleRule(a, b);
document.write( "f(x) = " + num);
</script>
|
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
22 Dec, 2022
Like Article
Save Article