Given a tree, and the weights of all the nodes and an integer x, the task is to find a node i such that weight[i] xor x is minimum.
Examples:
Input:

x = 15
Output: 3
Node 1: 5 xor 15 = 10
Node 2: 10 xor 15 = 5
Node 3: 11 xor 15 = 4
Node 4: 8 xor 15 = 7
Node 5: 6 xor 15 = 9
Approach: Perform dfs on the tree and keep track of the node whose weighted xor with x gives the minimum value.
Below is the implementation of above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int minimum = INT_MAX, x, ans;
vector< int > graph[100];
vector< int > weight(100);
void dfs( int node, int parent)
{
if (minimum > (weight[node] ^ x)) {
minimum = weight[node] ^ x;
ans = node;
}
for ( int to : graph[node]) {
if (to == parent)
continue ;
dfs(to, node);
}
}
int main()
{
x = 15;
weight[1] = 5;
weight[2] = 10;
weight[3] = 11;
weight[4] = 8;
weight[5] = 6;
graph[1].push_back(2);
graph[2].push_back(3);
graph[2].push_back(4);
graph[1].push_back(5);
dfs(1, 1);
cout << ans;
return 0;
}
|
Java
import java.util.*;
import java.lang.*;
class GFG
{
static int minimum = Integer.MAX_VALUE, x, ans;
@SuppressWarnings ( "unchecked" )
static Vector<Integer>[] graph = new Vector[ 100 ];
static int [] weight = new int [ 100 ];
static
{
for ( int i = 0 ; i < 100 ; i++)
graph[i] = new Vector<>();
}
static void dfs( int node, int parent)
{
if (minimum > (weight[node] ^ x))
{
minimum = weight[node] ^ x;
ans = node;
}
for ( int to : graph[node])
{
if (to == parent)
continue ;
dfs(to, node);
}
}
public static void main(String[] args)
{
x = 15 ;
weight[ 1 ] = 5 ;
weight[ 2 ] = 10 ;
weight[ 3 ] = 11 ;
weight[ 4 ] = 8 ;
weight[ 5 ] = 6 ;
graph[ 1 ].add( 2 );
graph[ 2 ].add( 3 );
graph[ 2 ].add( 4 );
graph[ 1 ].add( 5 );
dfs( 1 , 1 );
System.out.println(ans);
}
}
|
C#
using System;
using System.Collections.Generic;
class GFG
{
static int minimum = int .MaxValue, x, ans;
static List<List< int >> graph = new List<List< int >>();
static List< int > weight = new List< int >();
static void dfs( int node, int parent)
{
if (minimum > (weight[node] ^ x))
{
minimum = weight[node] ^ x;
ans = node;
}
for ( int i = 0; i < graph[node].Count; i++)
{
if (graph[node][i] == parent)
continue ;
dfs(graph[node][i], node);
}
}
public static void Main()
{
x = 15;
weight.Add(0);
weight.Add(5);
weight.Add(10);
weight.Add(11);;
weight.Add(8);
weight.Add(6);
for ( int i = 0; i < 100; i++)
graph.Add( new List< int >());
graph[1].Add(2);
graph[2].Add(3);
graph[2].Add(4);
graph[1].Add(5);
dfs(1, 1);
Console.Write( ans);
}
}
|
Python3
from sys import maxsize
minimum, x, ans = maxsize, None , None
graph = [[] for i in range ( 100 )]
weight = [ 0 ] * 100
def dfs(node, parent):
global x, ans, graph, weight, minimum
if minimum > weight[node] ^ x:
minimum = weight[node] ^ x
ans = node
for to in graph[node]:
if to = = parent:
continue
dfs(to, node)
if __name__ = = "__main__" :
x = 15
weight[ 1 ] = 5
weight[ 2 ] = 10
weight[ 3 ] = 11
weight[ 4 ] = 8
weight[ 5 ] = 6
graph[ 1 ].append( 2 )
graph[ 2 ].append( 3 )
graph[ 2 ].append( 4 )
graph[ 1 ].append( 5 )
dfs( 1 , 1 )
print (ans)
|
Javascript
<script>
let minimum = Number.MAX_VALUE, x, ans;
let graph = new Array(100);
let weight = new Array(100);
for (let i = 0; i < 100; i++)
{
graph[i] = [];
weight[i] = 0;
}
function dfs(node, parent)
{
if (minimum > (weight[node] ^ x))
{
minimum = weight[node] ^ x;
ans = node;
}
for (let to = 0; to < graph[node].length; to++)
{
if (graph[node][to] == parent)
continue ;
dfs(graph[node][to], node);
}
}
x = 15;
weight[1] = 5;
weight[2] = 10;
weight[3] = 11;
weight[4] = 8;
weight[5] = 6;
graph[1].push(2);
graph[2].push(3);
graph[2].push(4);
graph[1].push(5);
dfs(1, 1);
document.write(ans);
</script>
|
Time Complexity: O(N) where N is the number of nodes in the graph.
Space Complexity: O(N)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!