Find sum of all Boundary and Diagonal element of a Matrix

Given a 2D array arr[][] of order NxN, the task is to find the sum of all the elements present in both the diagonals and boundary elements of the given arr[][].

Examples:

Input: arr[][] = { {1, 2, 3, 4}, {1, 2, 3, 4}, {1, 2, 3, 4}, {1, 2, 3, 4} }
Output: 40
Explanation:
The Sum of elements on the boundary is 1 + 2 + 3 + 4 + 4 + 4 + 4 + 3 + 2 + 1 + 1 + 1 = 30.
The Sum of elements on the diagonals which do not intersect with the boundary elements is 2 + 3 + 2 + 3 = 10.
Therefore the required sum is 30 + 10 = 40.

Input: arr[][] = { {1, 2, 3}, {1, 2, 3}, {1, 2, 3}}
Output: 18
Explanation:
The Sum of elements on the boundary is 1 + 2 + 3 + 3 + 3 + 2 + 1 + 1 = 16.
The Sum of elements on the diagonals which do not intersect with the boundary elements is 2.
Therefore the required sum is 16 + 2 = 18.

Approach:



  1. Traverse the given 2D array with two loops, one for rows(say i) and another for columns(say j).
  2. If i equals to j and (i + j) equals to (size of column – 1) then that element contributes to diagonals of the given 2D array.
  3. If (i or j equals to 0) or (i or j equals to size of column – 1) then that element contributes to boundary elements of the given 2D array.
  4. The sum of all the element satisfying above two conditions gives the required sum.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the above approach
  
#include "bits/stdc++.h"
using namespace std;
  
const int N = 4;
  
// Function to find the sum of all diagonal
// and Boundary elements
void diagonalBoundarySum(int arr[N][N])
{
  
    int requiredSum = 0;
  
    // Traverse arr[][]
    // Loop from i to N-1 for rows
    for (int i = 0; i < N; i++) {
  
        // Loop from j = N-1 for columns
        for (int j = 0; j < N; j++) {
  
            // Condition for diagonal
            // elements
            if (i == j || (i + j) == N - 1) {
                requiredSum += arr[i][j];
            }
  
            // Condition for Boundary
            // elements
            else if (i == 0 || j == 0
                     || i == N - 1
                     || j == N - 1) {
                requiredSum += arr[i][j];
            }
        }
    }
  
    // Print the final Sum
    cout << requiredSum << endl;
}
  
// Driver Code
int main()
{
    int arr[][4] = { { 1, 2, 3, 4 },
                     { 1, 2, 3, 4 },
                     { 1, 2, 3, 4 },
                     { 1, 2, 3, 4 } };
  
    diagonalBoundarySum(arr);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the above approach
import java.util.*;
  
class GFG{
    public static int N = 4;
      
    // Function to find the sum of all diagonal
    // and Boundary elements
    static void diagonalBoundarySum(int arr[][]){
        int requiredSum = 0;
          
        // Traverse arr[][]
        // Loop from i to N-1 for rows
        for (int i = 0; i < N; i++) {
      
            // Loop from j = N-1 for columns
            for (int j = 0; j < N; j++) {
      
                // Condition for diagonal
                // elements
                if (i == j || (i + j) == N - 1) {
                    requiredSum += arr[i][j];
                }
      
                // Condition for Boundary
                // elements
                else if (i == 0 || j == 0 || i == N - 1|| j == N - 1) {
                    requiredSum += arr[i][j];
                }
            }
        }
      
        // Print the final Sum
        System.out.println(requiredSum);
    }
      
    // Driver Code
    public static void main(String args[])
    {
        int arr[][] = { { 1, 2, 3, 4 },{ 1, 2, 3, 4 },
                        { 1, 2, 3, 4 },{ 1, 2, 3, 4 } };
      
        diagonalBoundarySum(arr);
          
    }
}
  
// This code is contributed by AbhiThakur

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python implementation of the above approach
  
N = 4;
  
# Function to find the sum of all diagonal
# and Boundary elements
def diagonalBoundarySum(arr):
    requiredSum = 0;
  
    # Traverse arr
    # Loop from i to N-1 for rows
    for i in range(N):
  
        # Loop from j = N-1 for columns
        for j in range(N):
  
            # Condition for diagonal
            # elements
            if (i == j or (i + j) == N - 1):
                requiredSum += arr[i][j];
              
            # Condition for Boundary
            # elements
            elif(i == 0 or j == 0 or i == N - 1 or j == N - 1):
                requiredSum += arr[i][j];
  
    # Prthe final Sum
    print(requiredSum);
  
  
# Driver Code
if __name__ == '__main__':
    arr = [[ 1, 2, 3, 4 ],
    [ 1, 2, 3, 4 ],
    [ 1, 2, 3, 4 ],
    [ 1, 2, 3, 4 ]];
  
    diagonalBoundarySum(arr);
  
# This code is contributed by 29AjayKumar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the above approach
using System;
  
class GFG
{
    public static int N = 4;
      
    // Function to find the sum of all diagonal
    // and Boundary elements
    static void diagonalBoundarySum(int[, ] arr){
        int requiredSum = 0;
          
        // Traverse arr[][]
        // Loop from i to N-1 for rows
        for (int i = 0; i < N; i++) {
      
            // Loop from j = N-1 for columns
            for (int j = 0; j < N; j++) {
      
                // Condition for diagonal
                // elements
                if (i == j || (i + j) == N - 1) {
                    requiredSum += arr[i,j];
                }
      
                // Condition for Boundary
                // elements
                else if (i == 0 || j == 0 || i == N - 1|| j == N - 1) {
                    requiredSum += arr[i,j];
                }
            }
        }
      
        // Print the final Sum
        Console.WriteLine(requiredSum);
    }
      
    // Driver Code
    public static void Main()
    {
        int[, ] arr = { { 1, 2, 3, 4 },{ 1, 2, 3, 4 },{ 1, 2, 3, 4 },{ 1, 2, 3, 4 } };
      
        diagonalBoundarySum(arr);
          
    }
}
  
// This code is contributed by abhaysingh290895

chevron_right


Output:

40

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.