Given a fraction N/D, the task is to split this fraction into N parts such that their sum is equal to the fraction N/D, i.e.,

Note: Represents the terms in terms of fractions, instead of floating point numbers.
Input: N = 4, D = 2
Output: 4/5, 1/5, 1/3, 4/6
Explanation:

Therefore, it is a valid set of fractions such that their sum is 
Input: N = 3, D = 4
Output: 1/2, 1/10, 3/20
Explanation:

Therefore, it is a valid set of fractions such that their sum is
Approach: The key observation in the problem is that the first fraction numerator can be
and then further
denominators can be using the below recurrence relation.

Below is the implementation of the above approach:
C++
#include<bits/stdc++.h>
using namespace std;
void splitFraction( int n, int d)
{
int ar[n];
int first = d + n - 1;
ar[0] = first;
for ( int i = 1; i < n; i++)
{
int temp = --first;
first++;
ar[i] = first * temp;
--first;
}
for ( int i = 0; i < n; i++)
{
if (ar[i] % n == 0)
{
cout << "1/" << ar[i] / n << ", " ;
}
else
{
cout << n << "/" << ar[i] << ", " ;
}
}
}
int main()
{
int N = 4;
int D = 2;
splitFraction(N, D);
}
|
Java
import java.util.Scanner;
class Solution {
public static void
splitFraction( int n, int d)
{
long ar[] = new long [n];
long first = d + n - 1 ;
ar[ 0 ] = first;
for ( int i = 1 ; i < n; i++) {
ar[i] = first * (--first);
}
for ( int i = 0 ; i < n; i++) {
if (ar[i] % n == 0 ) {
System.out.print(
"1/" + ar[i] / n
+ ", " );
}
else {
System.out.print(
n + "/" + ar[i]
+ ", " );
}
}
}
public static void main(
String[] args) throws Exception
{
int N = 4 ;
int D = 2 ;
splitFraction(N, D);
}
}
|
Python3
def splitFraction(n, d):
ar = []
for i in range ( 0 , n):
ar.append( 0 )
first = d + n - 1
ar[ 0 ] = first
for i in range ( 1 , n):
temp = first - 1
ar[i] = first * temp
first - = 1
for i in range ( 0 , n):
if ar[i] % n = = 0 :
print ( "1/" , int (ar[i] / n),
"," , end = " " )
else :
print (n, "/" , ar[i], "," , end = " " )
N = 4
D = 2
splitFraction(N, D)
|
C#
using System;
class GFG{
public static void splitFraction( int n, int d)
{
long []ar = new long [n];
long first = d + n - 1;
ar[0] = first;
for ( int i = 1; i < n; i++)
{
ar[i] = first * (--first);
}
for ( int i = 0; i < n; i++)
{
if (ar[i] % n == 0)
{
Console.Write( "1/" + ar[i] / n + ", " );
}
else
{
Console.Write(n + "/" + ar[i] + ", " );
}
}
}
public static void Main(String[] args)
{
int N = 4;
int D = 2;
splitFraction(N, D);
}
}
|
Javascript
<script>
function splitFraction(n, d) {
var ar = new Array(n);
var first = d + n - 1;
ar[0] = first;
for ( var i = 1; i < n; i++) {
ar[i] = first * --first;
}
for ( var i = 0; i < n; i++) {
if (ar[i] % n === 0) {
document.write( "1/" + ar[i] / n + ", " );
} else {
document.write(n + "/" + ar[i] + ", " );
}
}
}
var N = 4;
var D = 2;
splitFraction(N, D);
</script>
|
Output:
4/5, 1/5, 1/3, 4/6,
Time Complexity: O(n), where n is the given integer.
Auxiliary Space: O(n), where n is the given integer.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!