Given a Boolean Matrix, find k such that all elements in k’th row are 0 and k’th column are 1.

Given a square boolean matrix mat[n][n], find k such that all elements in k’th row are 0 and all elements in k’th column are 1. The value of mat[k][k] can be anything (either 0 or 1). If no such k exists, return -1.

Examples:

Input: bool mat[n][n] = { {1, 0, 0, 0},
                          {1, 1, 1, 0},
                          {1, 1, 0, 0},
                          {1, 1, 1, 0},
                        };
Output: 0
All elements in 0'th row are 0 and all elements in 
0'th column are 1.  mat[0][0] is 1 (can be any value)


Input: bool mat[n][n] = {{0, 1, 1, 0, 1},
                         {0, 0, 0, 0, 0},
                         {1, 1, 1, 0, 0},
                         {1, 1, 1, 1, 0},
                         {1, 1, 1, 1, 1}};
Output: 1
All elements in 1'st row are 0 and all elements in 
1'st column are 1.  mat[1][1] is 0 (can be any value)


Input: bool mat[n][n] = {{0, 1, 1, 0, 1},
                         {0, 0, 0, 0, 0},
                         {1, 1, 1, 0, 0},
                         {1, 0, 1, 1, 0},
                         {1, 1, 1, 1, 1}};
Output: -1
There is no k such that k'th row elements are 0 and
k'th column elements are 1.

Expected time complexity is O(n)

We strongly recommend you to minimize your browser and try this yourself first.

A Simple Solution is check all rows one by one. If we find a row ‘i’ such that all elements of this row are 0 except mat[i][i] which may be either 0 or 1, then we check all values in column ‘i’. If all values are 1 in the column, then we return i. Time complexity of this solution is O(n2).

An Efficient Solution can solve this problem in O(n) time. The solution is based on below facts.
1) There can be at most one k that can be qualified to be an answer (Why? Note that if k’th row has all 0’s probably except mat[k][k], then no column can have all 1′)s.
2) If we traverse the given matrix from a corner (preferably from top right and bottom left), we can quickly discard complete row or complete column based on below rules.
….a) If mat[i][j] is 0 and i != j, then column j cannot be the solution.
….b) If mat[i][j] is 1 and i != j, then row i cannot be the solution.

Below is complete algorithm based on above observations.

1) Start from top right corner, i.e., i = 0, j = n-1.  
   Initialize result as -1.

2) Do following until we find the result or reach outside the matrix.

......a) If mat[i][j] is 0, then check all elements on left of j in current row. 
.........If all elements on left of j are also 0, then set result as i. Note 
.........that i may not be result, but if there is a result, then it must be i 
.........(Why? we reach mat[i][j] after discarding all rows above it and all 
.........columns on right of it)

.........If all left side elements of i'th row are not 0, them this row cannot 
.........be a solution, increment i.

......b) If mat[i][j] is 1, then check all elements below i in current column. 
.........If all elements below i are 1, then set result as j. Note that j may
......... not be result, but if there is a result, then it must be j 

.........If all elements of j'th column are not 1, them this column cannot be a
.........solution decrement j.

3) If result is -1, return it. 

4) Else check validity of result by checking all row and column
          elements of result

Below is the implementation based on above idea.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find i such that all entries in i'th row are 0
// and all entries in i't column are 1
#include <iostream>
using namespace std;
#define n 5
  
int find(bool arr[n][n])
{
    // Start from top-most rightmost corner
    // (We could start from other corners also)
    int i=0, j=n-1;
  
    // Initialize result
    int res = -1;
  
    // Find the index (This loop runs at most 2n times, we either
    // increment row number or decrement column number)
    while (i<n && j>=0)
    {
        // If current element is 0, then this row may be a solution
        if (arr[i][j] == 0)
        {
            // Check for all elements in this row
            while (j >= 0 && (arr[i][j] == 0 || i == j))
                j--;
  
            // If all values are 0, then store this row as result
            if (j == -1)
            {
                res = i;
                break;
            }
  
            // We reach here if we found a 1 in current row, so this
            //  row cannot be a solution, increment row number
            else i++;
        }
        else // If current element is 1
        {
            // Check for all elements in this column
            while (i<n && (arr[i][j] == 1 || i == j))
                i++;
  
            // If all elements are 1
            if (i == n)
            {
                res = j;
                break;
            }
  
            // We reach here if we found a 0 in current column, so this
            // column cannot be a solution, increment column number
            else j--;
        }
    }
  
    // If we could not find result in above loop, then result doesn't exist
    if (res == -1)
       return res;
  
    // Check if above computed res is valid
    for (int i=0; i<n; i++)
       if (res != i && arr[i][res] != 1)
          return -1;
    for (int j=0; j<n; j++)
       if (res != j && arr[res][j] != 0)
          return -1;
  
    return res;
}
  
  
/* Driver program to test above functions */
int main()
{
    bool mat[n][n] = {{0, 0, 1, 1, 0},
                      {0, 0, 0, 1, 0},
                      {1, 1, 1, 1, 0},
                      {0, 0, 0, 0, 0},
                      {1, 1, 1, 1, 1}};
    cout << find(mat);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find i such that all entries in i'th row are 0
// and all entries in i't column are 1
class GFG {
  
    static int n = 5;
  
    static int find(boolean arr[][]) {
        // Start from top-most rightmost corner
        // (We could start from other corners also)
        int i = 0, j = n - 1;
  
        // Initialize result
        int res = -1;
  
        // Find the index (This loop runs at most 2n times, we either
        // increment row number or decrement column number)
        while (i < n && j >= 0) {
            // If current element is false, then this row may be a solution
            if (arr[i][j] == false) {
                // Check for all elements in this row
                while (j >= 0 && (arr[i][j] == false || i == j)) {
                    j--;
                }
  
                // If all values are false, then store this row as result
                if (j == -1) {
                    res = i;
                    break;
                } // We reach here if we found a 1 in current row, so this
                //  row cannot be a solution, increment row number
                else {
                    i++;
                }
            } else // If current element is 1
            {
                // Check for all elements in this column
                while (i < n && (arr[i][j] == true || i == j)) {
                    i++;
                }
  
                // If all elements are 1
                if (i == n) {
                    res = j;
                    break;
                } // We reach here if we found a 0 in current column, so this
                // column cannot be a solution, increment column number
                else {
                    j--;
                }
            }
        }
  
        // If we could not find result in above loop, then result doesn't exist
        if (res == -1) {
            return res;
        }
  
        // Check if above computed res is valid
        for (int k = 0; k < n; k++) {
            if (res != k && arr[k][res] != true) {
                return -1;
            }
        }
        for (int l = 0; l < n; l++) {
            if (res != l && arr[res][l] != false) {
                return -1;
            }
        }
  
        return res;
    }
  
    /* Driver program to test above functions */
    public static void main(String[] args) {
        boolean mat[][] = {{false, false, true, true, false},
        {false, false, false, true, false},
        {true, true, true, true, false},
        {false, false, false, false, false},
        {true, true, true, true, true}};
        System.out.println(find(mat));
    }
}
  
/* This Java code is contributed by PrinciRaj1992*/

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

''' Python program to find k such that all elements in k'th row 
    are 0 and k'th column are 1'''
  
def find(arr):
  
    # store length of the array
    n = len(arr)
  
    # start from top right-most corner 
    i = 0
    j = n - 1
      
    # initialise result
    res = -1
  
    # find the index (This loop runs at most 2n times, we 
    # either increment row number or decrement column number)
    while i < n and j >= 0:
  
        # if the current element is 0, then this row may be a solution
        if arr[i][j] == 0:
  
            # check for all the elements in this row
            while j >= 0 and (arr[i][j] == 0 or i == j):
                j -= 1
  
            # if all values are 0, update result as row number    
            if j == -1:
                res = i
                break
  
            # if found a 1 in current row, the row can't be a 
            # solution, increment row number
            else: i += 1
  
        # if the current element is 1
        else:
  
            #check for all the elements in this column
            while i < n and (arr[i][j] == 1 or i == j):
                i +=1
  
            # if all elements are 1, update result as col number
            if i == n:
                res = j
                break
  
            # if found a 0 in current column, the column can't be a
            # solution, decrement column number
            else: j -= 1
  
    # if we couldn't find result in above loop, result doesn't exist
    if res == -1:
        return res
  
    # check if the above computed res value is valid
    for i in range(0, n):
        if res != i and arr[i][res] != 1:
            return -1
    for j in range(0, j):
        if res != j and arr[res][j] != 0:
            return -1;
   
    return res;
  
# test find(arr) function
arr = [ [0,0,1,1,0],
         [0,0,0,1,0],
         [1,1,1,1,0],
         [0,0,0,0,0],
         [1,1,1,1,1] ]
  
print find(arr)

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find i such that all entries in i'th row are 0 
// and all entries in i't column are 1 
  
using System;
public class GFG{
  
    static int n = 5; 
  
    static int find(bool [,]arr) { 
        // Start from top-most rightmost corner 
        // (We could start from other corners also) 
        int i = 0, j = n - 1; 
  
        // Initialize result 
        int res = -1; 
  
        // Find the index (This loop runs at most 2n times, we either 
        // increment row number or decrement column number) 
        while (i < n && j >= 0) { 
            // If current element is false, then this row may be a solution 
            if (arr[i,j] == false) { 
                // Check for all elements in this row 
                while (j >= 0 && (arr[i,j] == false || i == j)) { 
                    j--; 
                
  
                // If all values are false, then store this row as result 
                if (j == -1) { 
                    res = i; 
                    break
                } // We reach here if we found a 1 in current row, so this 
                // row cannot be a solution, increment row number 
                else
                    i++; 
                
            } else // If current element is 1 
            
                // Check for all elements in this column 
                while (i < n && (arr[i,j] == true || i == j)) { 
                    i++; 
                
  
                // If all elements are 1 
                if (i == n) { 
                    res = j; 
                    break
                } // We reach here if we found a 0 in current column, so this 
                // column cannot be a solution, increment column number 
                else
                    j--; 
                
            
        
  
        // If we could not find result in above loop, then result doesn't exist 
        if (res == -1) { 
            return res; 
        
  
        // Check if above computed res is valid 
        for (int k = 0; k < n; k++) { 
            if (res != k && arr[k,res] != true) { 
                return -1; 
            
        
        for (int l = 0; l < n; l++) { 
            if (res != l && arr[res,l] != false) { 
                return -1; 
            
        
  
        return res; 
    
  
    /* Driver program to test above functions */
    public static void Main() { 
        bool [,]mat = {{false, false, true, true, false}, 
        {false, false, false, true, false}, 
        {true, true, true, true, false}, 
        {false, false, false, false, false}, 
        {true, true, true, true, true}}; 
        Console.WriteLine(find(mat)); 
    
  
// This code is contributed by PrinciRaj1992 

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find i such that all
// entries in i'th row are 0 and all
// entries in i'th column are 1
  
function find(&$arr)
{
    $n = 5;
      
    // Start from top-most rightmost corner
    // (We could start from other corners also)
    $i = 0;
    $j = $n - 1;
  
    // Initialize result
    $res = -1;
  
    // Find the index (This loop runs at most
    // 2n times, we either increment row number
    // or decrement column number)
    while ($i < $n && $j >= 0)
    {
        // If current element is 0, then this 
        // row may be a solution
        if ($arr[$i][$j] == 0)
        {
            // Check for all elements in this row
            while ($j >= 0 && ($arr[$i][$j] == 0 || 
                                        $i == $j))
                $j--;
  
            // If all values are 0, then store
            // this row as result
            if ($j == -1)
            {
                $res = $i;
                break;
            }
  
            // We reach here if we found a 1 in current 
            // row, so this row cannot be a solution,
            // increment row number
            else
            $i++;
        }
        else // If current element is 1
        {
            // Check for all elements in this column
            while ($i < $n && ($arr[$i][$j] == 1 || 
                                        $i == $j))
                $i++;
  
            // If all elements are 1
            if ($i == $n)
            {
                $res = $j;
                break;
            }
  
            // We reach here if we found a 0 in current
            // column, so this column cannot be a solution,
            // increment column number
            else
            $j--;
        }
    }
  
    // If we could not find result in above 
    // loop, then result doesn't exist
    if ($res == -1)
    return $res;
  
    // Check if above computed res is valid
    for ($i = 0; $i < $n; $i++)
    if ($res != $i && $arr[$i][$res] != 1)
        return -1;
    for ($j = 0; $j < $n; $j++)
    if ($res != $j && $arr[$res][$j] != 0)
        return -1;
  
    return $res;
}
  
  
// Driver Code
$mat = array(array(0, 0, 1, 1, 0),
             array(0, 0, 0, 1, 0),
             array(1, 1, 1, 1, 0),
             array(0, 0, 0, 0, 0),
             array(1, 1, 1, 1, 1));
echo (find($mat));
  
// This code is contributed by Shivi_Aggarwal
?>

chevron_right



Output:

3

Time complexity of this solution is O(n). Note that we traverse at most 2n elements in the main while loop.

This article is contributed by Ashish Gupta. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above



My Personal Notes arrow_drop_up



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.