Find a Square Matrix such that sum of elements in every row and column is K

Given two integers N and K, the task is to find an N x N square matrix such that sum of every row and column should be equal to K. Note that there can be multiple such matrices possible. Print any one of them.

Examples:

Input: N = 3, K = 15
Output:
2 7 6
9 5 1
4 3 8



Input: N = 3, K = 7
Output:
7 0 0
0 7 0
0 0 7

Approach: An N x N matrix such that each left diagonal element is equal to K and rest elements are 0 will satisfy the given condition. In this way, the sum of the elements of the each row and column will be equal to K.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to print the
// required matrix
void printMatrix(int n, int k)
{
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
  
            // Print k for the left
            // diagonal elements
            if (i == j)
                cout << k << " ";
  
            // Print 0 for the rest
            else
                cout << "0 ";
        }
        cout << "\n";
    }
}
  
// Driver code
int main()
{
    int n = 3, k = 7;
  
    printMatrix(n, k);
  
    return (0);
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
import java.util.*;
  
class GFG 
{
  
// Function to print the required matrix
static void printMatrix(int n, int k)
{
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < n; j++) 
        {
  
            // Print k for the left
            // diagonal elements
            if (i == j)
                System.out.print(k + " ");
  
            // Print 0 for the rest
            else
                System.out.print("0 ");
        }
        System.out.print("\n");
    }
}
  
// Driver code
public static void main(String[] args)
{
    int n = 3, k = 7;
  
    printMatrix(n, k);
}
  
// This code is contributed by Princi Singh

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach 
  
# Function to print the 
# required matrix 
def printMatrix(n, k) :
  
    for i in range(n) :
        for j in range(n) : 
  
            # Print k for the left 
            # diagonal elements 
            if (i == j) :
                print(k, end = " "); 
  
            # Print 0 for the rest 
            else:
                print("0", end = " "); 
                  
        print(); 
  
# Driver code 
if __name__ == "__main__"
  
    n = 3; k = 7
  
    printMatrix(n, k); 
  
# This code is contributed by AnkitRai01

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
      
class GFG 
{
  
// Function to print the required matrix
static void printMatrix(int n, int k)
{
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < n; j++) 
        {
  
            // Print k for the left
            // diagonal elements
            if (i == j)
                Console.Write(k + " ");
  
            // Print 0 for the rest
            else
                Console.Write("0 ");
        }
        Console.Write("\n");
    }
}
  
// Driver code
public static void Main(String[] args)
{
    int n = 3, k = 7;
  
    printMatrix(n, k);
}
}
  
// This code is contributed by PrinciRaj1992

chevron_right


Output:

7 0 0 
0 7 0 
0 0 7


My Personal Notes arrow_drop_up

Budding Web DeveloperKeen learnerAverage CoderDancer&Social Activist

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.