Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Find a Square Matrix such that sum of elements in every row and column is K

  • Last Updated : 18 Mar, 2021

Given two integers N and K, the task is to find an N x N square matrix such that sum of every row and column should be equal to K. Note that there can be multiple such matrices possible. Print any one of them.
Examples: 
 

Input: N = 3, K = 15 
Output: 
2 7 6 
9 5 1 
4 3 8
Input: N = 3, K = 7 
Output: 
7 0 0 
0 7 0 
0 0 7 
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

 

Approach: An N x N matrix such that each left diagonal element is equal to K and rest elements are 0 will satisfy the given condition. In this way, the sum of the elements of the each row and column will be equal to K.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to print the
// required matrix
void printMatrix(int n, int k)
{
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
 
            // Print k for the left
            // diagonal elements
            if (i == j)
                cout << k << " ";
 
            // Print 0 for the rest
            else
                cout << "0 ";
        }
        cout << "\n";
    }
}
 
// Driver code
int main()
{
    int n = 3, k = 7;
 
    printMatrix(n, k);
 
    return (0);
}

Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
// Function to print the required matrix
static void printMatrix(int n, int k)
{
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < n; j++)
        {
 
            // Print k for the left
            // diagonal elements
            if (i == j)
                System.out.print(k + " ");
 
            // Print 0 for the rest
            else
                System.out.print("0 ");
        }
        System.out.print("\n");
    }
}
 
// Driver code
public static void main(String[] args)
{
    int n = 3, k = 7;
 
    printMatrix(n, k);
}
}
 
// This code is contributed by Princi Singh

Python3




# Python3 implementation of the approach
 
# Function to print the
# required matrix
def printMatrix(n, k) :
 
    for i in range(n) :
        for j in range(n) :
 
            # Print k for the left
            # diagonal elements
            if (i == j) :
                print(k, end = " ");
 
            # Print 0 for the rest
            else:
                print("0", end = " ");
                 
        print();
 
# Driver code
if __name__ == "__main__" :
 
    n = 3; k = 7;
 
    printMatrix(n, k);
 
# This code is contributed by AnkitRai01

C#




// C# implementation of the approach
using System;
     
class GFG
{
 
// Function to print the required matrix
static void printMatrix(int n, int k)
{
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < n; j++)
        {
 
            // Print k for the left
            // diagonal elements
            if (i == j)
                Console.Write(k + " ");
 
            // Print 0 for the rest
            else
                Console.Write("0 ");
        }
        Console.Write("\n");
    }
}
 
// Driver code
public static void Main(String[] args)
{
    int n = 3, k = 7;
 
    printMatrix(n, k);
}
}
 
// This code is contributed by PrinciRaj1992

Javascript




<script>
 
// javascript implementation of the approach
 
// Function to print the required matrix
function printMatrix(n , k)
{
    for (i = 0; i < n; i++)
    {
        for (j = 0; j < n; j++)
        {
 
            // Print k for the left
            // diagonal elements
            if (i == j)
                document.write(k + " ");
 
            // Prvar 0 for the rest
            else
                document.write("0 ");
        }
        document.write("</br>");
    }
}
 
// Driver code
var n = 3, k = 7;
 
printMatrix(n, k);
 
// This code is contributed by 29AjayKumar
 
</script>
Output: 
7 0 0 
0 7 0 
0 0 7

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!