# Find a Square Matrix such that sum of elements in every row and column is K

Given two integers N and K, the task is to find an N x N square matrix such that sum of every row and column should be equal to K. Note that there can be multiple such matrices possible. Print any one of them.

Examples:

Input: N = 3, K = 15
Output:
2 7 6
9 5 1
4 3 8

Input: N = 3, K = 7
Output:
7 0 0
0 7 0
0 0 7

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: An N x N matrix such that each left diagonal element is equal to K and rest elements are 0 will satisfy the given condition. In this way, the sum of the elements of the each row and column will be equal to K.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to print the ` `// required matrix ` `void` `printMatrix(``int` `n, ``int` `k) ` `{ ` `    ``for` `(``int` `i = 0; i < n; i++) { ` `        ``for` `(``int` `j = 0; j < n; j++) { ` ` `  `            ``// Print k for the left ` `            ``// diagonal elements ` `            ``if` `(i == j) ` `                ``cout << k << ``" "``; ` ` `  `            ``// Print 0 for the rest ` `            ``else` `                ``cout << ``"0 "``; ` `        ``} ` `        ``cout << ``"\n"``; ` `    ``} ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `n = 3, k = 7; ` ` `  `    ``printMatrix(n, k); ` ` `  `    ``return` `(0); ` `} `

## Java

 `// Java implementation of the approach ` `import` `java.util.*; ` ` `  `class` `GFG  ` `{ ` ` `  `// Function to print the required matrix ` `static` `void` `printMatrix(``int` `n, ``int` `k) ` `{ ` `    ``for` `(``int` `i = ``0``; i < n; i++) ` `    ``{ ` `        ``for` `(``int` `j = ``0``; j < n; j++)  ` `        ``{ ` ` `  `            ``// Print k for the left ` `            ``// diagonal elements ` `            ``if` `(i == j) ` `                ``System.out.print(k + ``" "``); ` ` `  `            ``// Print 0 for the rest ` `            ``else` `                ``System.out.print(``"0 "``); ` `        ``} ` `        ``System.out.print(``"\n"``); ` `    ``} ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``int` `n = ``3``, k = ``7``; ` ` `  `    ``printMatrix(n, k); ` `} ` `}  ` ` `  `// This code is contributed by Princi Singh `

## Python3

 `# Python3 implementation of the approach  ` ` `  `# Function to print the  ` `# required matrix  ` `def` `printMatrix(n, k) : ` ` `  `    ``for` `i ``in` `range``(n) : ` `        ``for` `j ``in` `range``(n) :  ` ` `  `            ``# Print k for the left  ` `            ``# diagonal elements  ` `            ``if` `(i ``=``=` `j) : ` `                ``print``(k, end ``=` `" "``);  ` ` `  `            ``# Print 0 for the rest  ` `            ``else``: ` `                ``print``(``"0"``, end ``=` `" "``);  ` `                 `  `        ``print``();  ` ` `  `# Driver code  ` `if` `__name__ ``=``=` `"__main__"` `:  ` ` `  `    ``n ``=` `3``; k ``=` `7``;  ` ` `  `    ``printMatrix(n, k);  ` ` `  `# This code is contributed by AnkitRai01 `

## C#

 `// C# implementation of the approach ` `using` `System; ` `     `  `class` `GFG  ` `{ ` ` `  `// Function to print the required matrix ` `static` `void` `printMatrix(``int` `n, ``int` `k) ` `{ ` `    ``for` `(``int` `i = 0; i < n; i++) ` `    ``{ ` `        ``for` `(``int` `j = 0; j < n; j++)  ` `        ``{ ` ` `  `            ``// Print k for the left ` `            ``// diagonal elements ` `            ``if` `(i == j) ` `                ``Console.Write(k + ``" "``); ` ` `  `            ``// Print 0 for the rest ` `            ``else` `                ``Console.Write(``"0 "``); ` `        ``} ` `        ``Console.Write(``"\n"``); ` `    ``} ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main(String[] args) ` `{ ` `    ``int` `n = 3, k = 7; ` ` `  `    ``printMatrix(n, k); ` `} ` `} ` ` `  `// This code is contributed by PrinciRaj1992 `

Output:

```7 0 0
0 7 0
0 0 7
```

GeeksforGeeks has prepared a complete interview preparation course with premium videos, theory, practice problems, TA support and many more features. Please refer Placement 100 for details

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.