Skip to content
Related Articles

Related Articles

Improve Article

Find a number X such that (X XOR A) is minimum and the count of set bits in X and B are equal

  • Difficulty Level : Hard
  • Last Updated : 09 Jun, 2021

Given two integers A and B, the task is to find an integer X such that (X XOR A) is minimum possible and the count of set bit in X is equal to the count of set bits in B.
Examples: 
 

Input: A = 3, B = 5 
Output:
Binary(A) = Binary(3) = 011 
Binary(B) = Binary(5) = 101 
The XOR will be minimum when M = 3 
i.e. (3 XOR 3) = 0 and the number 
of set bits in 3 is equal 
to the number of set bits in 5.
Input: A = 7, B = 12 
Output:
 

 

Approach: It is known that the xor of an element with itself is 0. So, try to generate M’s binary representation as close to A as possible. Traverse from the most significant bit in A to the least significant bit and if a bit is set at the current position then it also needs to be set in the required number in order to minimize the XOR but the number of bits set has to be equal to the number of set bits in B. So, when the count of set bits in the required number has reached the count of set bits in B then the rest of the bits have to be 0.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the value x
// such that (x XOR a) is minimum
// and the number of set bits in x
// is equal to the number
// of set bits in b
int minVal(int a, int b)
{
    // Count of set-bits in bit
    int setBits = __builtin_popcount(b);
    int ans = 0;
 
    for (int i = 30; i >= 0; i--) {
        int mask = 1 << i;
        bool set = a & mask;
 
        // If i'th bit is set also set the
        // same bit in the required number
        if (set && setBits > 0) {
            ans |= (1 << i);
 
            // Decrease the count of setbits
            // in b as the count of set bits
            // in the required number has to be
            // equal to the count of set bits in b
            setBits--;
        }
    }
 
    return ans;
}
 
// Driver code
int main()
{
    int a = 3, b = 5;
 
    cout << minVal(a, b);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
    // Function to get no of set
    // bits in binary representation
    // of positive integer n
    static int countSetBits(int n)
    {
        int count = 0;
        while (n > 0)
        {
            count += n & 1;
            n >>= 1;
        }
        return count;
    }
 
// Function to return the value x
// such that (x XOR a) is minimum
// and the number of set bits in x
// is equal to the number
// of set bits in b
static int minVal(int a, int b)
{
    // Count of set-bits in bit
    int setBits = countSetBits(b);
    int ans = 0;
 
    for (int i = 30; i >= 0; i--)
    {
        int mask = 1 << i;
         
        // If i'th bit is set also set the
        // same bit in the required number
        if ((a & mask) > 0 && setBits > 0)
        {
            ans |= (1 << i);
             
            // Decrease the count of setbits
            // in b as the count of set bits
            // in the required number has to be
            // equal to the count of set bits in b
            setBits--;
        }
    }
    return ans;
}
 
// Driver Code
public static void main(String[] args)
{
    int a = 3, b = 5;
 
    System.out.println(minVal(a, b));
}
}
 
// This code is contributed by Rajput-Ji

Python3




# Python3 implementation of the approach
 
# Function to return the value x
# such that (x XOR a) is minimum
# and the number of set bits in x
# is equal to the number
# of set bits in b
def minVal(a, b) :
 
    # Count of set-bits in bit
    setBits = bin(b).count('1');
    ans = 0;
 
    for i in range(30, -1, -1) :
        mask = (1 << i);
        s = (a & mask);
 
        # If i'th bit is set also set the
        # same bit in the required number
        if (s and setBits > 0) :
            ans |= (1 << i);
 
            # Decrease the count of setbits
            # in b as the count of set bits
            # in the required number has to be
            # equal to the count of set bits in b
            setBits -= 1;
 
    return ans;
 
# Driver code
if __name__ == "__main__" :
 
    a = 3; b = 5;
 
    print(minVal(a, b));
 
# This code is contributed by kanugargng

C#




// C# implementation of the approach
using System;
 
class GFG
{
    // Function to get no of set
    // bits in binary representation
    // of positive integer n
    static int countSetBits(int n)
    {
        int count = 0;
        while (n > 0)
        {
            count += n & 1;
            n >>= 1;
        }
        return count;
    }
 
// Function to return the value x
// such that (x XOR a) is minimum
// and the number of set bits in x
// is equal to the number
// of set bits in b
static int minVal(int a, int b)
{
    // Count of set-bits in bit
    int setBits = countSetBits(b);
    int ans = 0;
 
    for (int i = 30; i >= 0; i--)
    {
        int mask = 1 << i;
         
        // If i'th bit is set also set the
        // same bit in the required number
        if ((a & mask) > 0 && setBits > 0)
        {
             
            ans |= (1 << i);
             
            // Decrease the count of setbits
            // in b as the count of set bits
            // in the required number has to be
            // equal to the count of set bits in b
            setBits--;
        }
    }
 
    return ans;
}
 
// Driver Code
public static void Main()
{
    int a = 3, b = 5;
 
    Console.Write(minVal(a, b));
}
}
 
// This code is contributed by Mohit kumar 29

Javascript




<script>
// Javascript implementation of the approach
 
// Function to get no of set
// bits in binary representation
// of positive integer n
function countSetBits(n) {
    let count = 0;
    while (n > 0) {
        count += n & 1;
        n >>= 1;
    }
    return count;
}
 
// Function to return the value x
// such that (x XOR a) is minimum
// and the number of set bits in x
// is equal to the number
// of set bits in b
function minVal(a, b)
{
 
    // Count of set-bits in bit
    let setBits = countSetBits(b);
    let ans = 0;
 
    for (let i = 30; i >= 0; i--) {
        let mask = 1 << i;
 
        // If i'th bit is set also set the
        // same bit in the required number
        if ((a & mask) > 0 && setBits > 0) {
 
            ans |= (1 << i);
 
            // Decrease the count of setbits
            // in b as the count of set bits
            // in the required number has to be
            // equal to the count of set bits in b
            setBits--;
        }
    }
 
    return ans;
}
 
// Driver Code
let a = 3, b = 5;
 
document.write(minVal(a, b));
 
// This code is contributed by gfgking.
</script>
Output: 



3

 

Time Complexity: O(log(N))
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :