Fast Exponentiation using Bit Manipulation
Given two integers A and N, the task is to calculate A raised to power N (i.e. AN).
Examples:
Input: A = 3, N = 5
Output: 243
Explanation:
3 raised to power 5 = (3*3*3*3*3) = 243Input: A = 21, N = 4
Output: 194481
Explanation:
21 raised to power 4 = (21*21*21*21) = 194481
Naive Approach:
The simplest approach to solve this problem is to repetitively multiply A, N times and print the product.
Time Complexity: O(N)
Auxiliary Space: O(1)
Efficient Approach:
To optimize the above approach, the idea is to use Bit Manipulation. Convert the integer N to its binary form and follow the steps below:
- Initialize ans to store the final answer of AN.
- Traverse until N > 0 and in each iteration, perform Right Shift operation on it.
- Also, in each iteration, multiply A with itself and update it.
- If current LSB is set, then multiply current value of A to ans.
- Finally, after completing the above steps, print ans.
Below is the implementation of the above approach:
C++
// C++ Program to implement // the above approach #include <iostream> using namespace std; // Function to return a^n int powerOptimised( int a, int n) { // Stores final answer int ans = 1; while (n > 0) { int last_bit = (n & 1); // Check if current LSB // is set if (last_bit) { ans = ans * a; } a = a * a; // Right shift n = n >> 1; } return ans; } // Driver Code int main() { int a = 3, n = 5; cout << powerOptimised(a, n); return 0; } |
Java
// Java program to implement // the above approach class GFG{ // Function to return a^n static int powerOptimised( int a, int n) { // Stores final answer int ans = 1 ; while (n > 0 ) { int last_bit = (n & 1 ); // Check if current LSB // is set if (last_bit > 0 ) { ans = ans * a; } a = a * a; // Right shift n = n >> 1 ; } return ans; } // Driver Code public static void main(String[] args) { int a = 3 , n = 5 ; System.out.print(powerOptimised(a, n)); } } // This code is contributed by PrinciRaj1992 |
Python3
# Python3 program to implement # the above approach # Function to return a^n def powerOptimised(a, n): # Stores final answer ans = 1 while (n > 0 ): last_bit = (n & 1 ) # Check if current LSB # is set if (last_bit): ans = ans * a a = a * a # Right shift n = n >> 1 return ans # Driver code if __name__ = = '__main__' : a = 3 n = 5 print (powerOptimised(a,n)) # This code is contributed by virusbuddah_ |
C#
// C# program to implement // the above approach using System; class GFG{ // Function to return a^n static int powerOptimised( int a, int n) { // Stores readonly answer int ans = 1; while (n > 0) { int last_bit = (n & 1); // Check if current LSB // is set if (last_bit > 0) { ans = ans * a; } a = a * a; // Right shift n = n >> 1; } return ans; } // Driver Code public static void Main(String[] args) { int a = 3, n = 5; Console.Write(powerOptimised(a, n)); } } // This code is contributed by Princi Singh |
Javascript
<script> // Javascript program to implement // the above approach // Function to return a^n function powerOptimised(a, n) { // Stores final answer let ans = 1; while (n > 0) { let last_bit = (n & 1); // Check if current LSB // is set if (last_bit > 0) { ans = ans * a; } a = a * a; // Right shift n = n >> 1; } return ans; } // Driver Code let a = 3, n = 5; document.write(powerOptimised(a, n)); </script> |
Output:
243
Time Complexity: O(logN)
Auxiliary Space: O(1)
Please Login to comment...