Factor Tree of a given Number
Factor Tree is an intuitive method to understand the factors of a number. It shows how all the factors are been derived from the number. It is a special diagram where you find the factors of a number, then the factors of those numbers, etc until you can’t factor anymore. The ends are all the prime factors of the original number.
Example:
Input : v = 48 Output : Root of below tree 48 /\ 2 24 /\ 2 12 /\ 2 6 /\ 2 3
The factor tree is created recursively. A binary tree is used.
- We start with a number and find the minimum divisor possible.
- Then, we divide the parent number by the minimum divisor.
- We store both the divisor and quotient as two children of the parent number.
- Both the children are sent into function recursively.
- If a divisor less than half the number is not found, two children are stored as NULL.
Implementation:
C++
// C++ program to construct Factor Tree for // a given number #include<bits/stdc++.h> using namespace std; // Tree node struct Node { struct Node *left, *right; int key; }; // Utility function to create a new tree Node Node* newNode( int key) { Node* temp = new Node; temp->key = key; temp->left = temp->right = NULL; return temp; } // Constructs factor tree for given value and stores // root of tree at given reference. void createFactorTree( struct Node **node_ref, int v) { (*node_ref) = newNode(v); // the number is factorized for ( int i = 2 ; i < v/2 ; i++) { if (v % i != 0) continue ; // If we found a factor, we construct left // and right subtrees and return. Since we // traverse factors starting from smaller // to greater, left child will always have // smaller factor createFactorTree(&((*node_ref)->left), i); createFactorTree(&((*node_ref)->right), v/i); return ; } } // Iterative method to find the height of Binary Tree void printLevelOrder(Node *root) { // Base Case if (root == NULL) return ; queue<Node *> q; q.push(root); while (q.empty() == false ) { // Print front of queue and remove // it from queue Node *node = q.front(); cout << node->key << " " ; q.pop(); if (node->left != NULL) q.push(node->left); if (node->right != NULL) q.push(node->right); } } // driver program int main() { int val = 48; // sample value struct Node *root = NULL; createFactorTree(&root, val); cout << "Level order traversal of " "constructed factor tree" ; printLevelOrder(root); return 0; } |
Java
// Java program to construct Factor Tree for // a given number import java.util.*; class GFG { // Tree node static class Node { Node left, right; int key; }; static Node root; // Utility function to create a new tree Node static Node newNode( int key) { Node temp = new Node(); temp.key = key; temp.left = temp.right = null ; return temp; } // Constructs factor tree for given value and stores // root of tree at given reference. static Node createFactorTree(Node node_ref, int v) { (node_ref) = newNode(v); // the number is factorized for ( int i = 2 ; i < v/ 2 ; i++) { if (v % i != 0 ) continue ; // If we found a factor, we construct left // and right subtrees and return. Since we // traverse factors starting from smaller // to greater, left child will always have // smaller factor node_ref.left = createFactorTree(((node_ref).left), i); node_ref.right = createFactorTree(((node_ref).right), v/i); return node_ref; } return node_ref; } // Iterative method to find the height of Binary Tree static void printLevelOrder(Node root) { // Base Case if (root == null ) return ; Queue<Node > q = new LinkedList<>(); q.add(root); while (q.isEmpty() == false ) { // Print front of queue and remove // it from queue Node node = q.peek(); System.out.print(node.key + " " ); q.remove(); if (node.left != null ) q.add(node.left); if (node.right != null ) q.add(node.right); } } // Driver program public static void main(String[] args) { int val = 48 ; // sample value root = null ; root = createFactorTree(root, val); System.out.println( "Level order traversal of " + "constructed factor tree" ); printLevelOrder(root); } } // This code is contributed by Rajput-Ji |
Python3
# Python program to construct Factor Tree for # a given number class Node: def __init__( self , key): self .left = None self .right = None self .key = key # Utility function to create a new tree Node def newNode(key): temp = Node(key) return temp # Constructs factor tree for given value and stores # root of tree at given reference. def createFactorTree(node_ref, v): node_ref = newNode(v) # the number is factorized for i in range ( 2 , int (v / 2 )): if (v % i ! = 0 ): continue # If we found a factor, we construct left # and right subtrees and return. Since we # traverse factors starting from smaller # to greater, left child will always have # smaller factor node_ref.left = createFactorTree(((node_ref).left), i) node_ref.right = createFactorTree(((node_ref).right), int (v / i)) return node_ref return node_ref # Iterative method to find the height of Binary Tree def printLevelOrder(root): # Base Case if (root = = None ): return q = []; q.append(root); while ( len (q) > 0 ): # Print front of queue and remove # it from queue node = q[ 0 ] print (node.key, end = " " ) q = q[ 1 :] if (node.left ! = None ): q.append(node.left) if (node.right ! = None ): q.append(node.right) val = 48 # sample value root = None root = createFactorTree(root, val) print ( "Level order traversal of constructed factor tree" ) printLevelOrder(root) # This code is contributed by shinjanpatra |
C#
// C# program to construct Factor Tree for // a given number using System; using System.Collections.Generic; public class GFG { // Tree node public class Node { public Node left, right; public int key; }; static Node root; // Utility function to create a new tree Node static Node newNode( int key) { Node temp = new Node(); temp.key = key; temp.left = temp.right = null ; return temp; } // Constructs factor tree for given value and stores // root of tree at given reference. static Node createFactorTree(Node node_ref, int v) { (node_ref) = newNode(v); // the number is factorized for ( int i = 2 ; i < v/2 ; i++) { if (v % i != 0) continue ; // If we found a factor, we construct left // and right subtrees and return. Since we // traverse factors starting from smaller // to greater, left child will always have // smaller factor node_ref.left = createFactorTree(((node_ref).left), i); node_ref.right = createFactorTree(((node_ref).right), v/i); return node_ref; } return node_ref; } // Iterative method to find the height of Binary Tree static void printLevelOrder(Node root) { // Base Case if (root == null ) return ; Queue<Node > q = new Queue<Node>(); q.Enqueue(root); while (q.Count != 0) { // Print front of queue and remove // it from queue Node node = q.Peek(); Console.Write(node.key + " " ); q.Dequeue(); if (node.left != null ) q.Enqueue(node.left); if (node.right != null ) q.Enqueue(node.right); } } // Driver program public static void Main(String[] args) { int val = 48; // sample value root = null ; root = createFactorTree(root, val); Console.WriteLine( "Level order traversal of " + "constructed factor tree" ); printLevelOrder(root); } } // This code is contributed by gauravrajput1 |
Javascript
<script> // Javascript program to construct Factor Tree for // a given number class Node { constructor(key) { this .left = null ; this .right = null ; this .key = key; } } let root; // Utility function to create a new tree Node function newNode(key) { let temp = new Node(key); return temp; } // Constructs factor tree for given value and stores // root of tree at given reference. function createFactorTree(node_ref, v) { (node_ref) = newNode(v); // the number is factorized for (let i = 2 ; i < parseInt(v/2, 10) ; i++) { if (v % i != 0) continue ; // If we found a factor, we construct left // and right subtrees and return. Since we // traverse factors starting from smaller // to greater, left child will always have // smaller factor node_ref.left = createFactorTree(((node_ref).left), i); node_ref.right = createFactorTree(((node_ref).right), parseInt(v/i, 10)); return node_ref; } return node_ref; } // Iterative method to find the height of Binary Tree function printLevelOrder(root) { // Base Case if (root == null ) return ; let q = []; q.push(root); while (q.length > 0) { // Print front of queue and remove // it from queue let node = q[0]; document.write(node.key + " " ); q.shift(); if (node.left != null ) q.push(node.left); if (node.right != null ) q.push(node.right); } } let val = 48; // sample value root = null ; root = createFactorTree(root, val); document.write( "Level order traversal of " + "constructed factor tree" + "</br>" ); printLevelOrder(root); // This code is contributed by suresh07. </script> |
Level order traversal of constructed factor tree48 2 24 2 12 2 6 2 3
Time Complexity: O(n), where n is the given number.
Space Complexity: O(k), where k is the factor of the number.
This article is contributed by Suprotik Dey. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Login to comment...