Square Free Number

Given a number, check if it is square free or not. A number is said to be square free if no prime factor divides it more than once, i.e., largest power of a prime factor that divides n is one. First few square free numbers are 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, …

Examples:

Input : n = 10
Output : Yes
10 can be factorized as 2*5. Since
no prime factor appears more than
once, it is a square free number.

Input :  n = 20
Output : No
20 can be factorized as 2 * 2 * 5.
Since prime factor appears more than
once, it is not a square free number.

The idea is simple, we one by one find all prime factors. For every prime factor, we check if its square also divides n. If yes, then we return false. Finally if we do not find a prime factor which is divisible more than once, we return false.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to print 
// all prime factors
# include <bits/stdc++.h>
using namespace std;
   
// Returns true if n is a square free
// number, else returns false.
bool isSquareFree(int n)
{
    if (n % 2 == 0)
       n = n/2;
   
    // If 2 again divides n, then n is 
    // not a square free number.
    if (n % 2 == 0)
       return false;
  
    // n must be odd at this point.  So we can  
    // skip one element (Note i = i +2)
    for (int i = 3; i <= sqrt(n); i = i+2)
    {
        // Check if i is a prime factor
        if (n % i == 0)
        {
           n = n/i;
  
           // If i again divides, then 
           // n is not square free
           if (n % i == 0)
               return false;
        }
    }
  
    return true;
}
   
/* Driver program to test above function */
int main()
{
    int n = 10;
    if (isSquareFree(n))
       cout << "Yes";
    else
       cout << "No";
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Program to print 
// all prime factors
  
class GFG {
      
    // Returns true if n is a square free
    // number, else returns false.
    static boolean isSquareFree(int n)
    {
        if (n % 2 == 0)
        n = n / 2;
      
        // If 2 again divides n, then n is 
        // not a square free number.
        if (n % 2 == 0)
        return false;
      
        // n must be odd at this point. So we can 
        // skip one element (Note i = i +2)
        for (int i = 3; i <= Math.sqrt(n); i = i + 2)
        {
            // Check if i is a prime factor
            if (n % i == 0)
            {
                n = n / i;
          
                // If i again divides, then 
                // n is not square free
                if (n % i == 0)
                    return false;
            }
        }
      
        return true;
    }
      
    /* Driver program to test above function */
    public static void main(String[] args)
    {
        int n = 10;
        if (isSquareFree(n))
            System.out.println("Yes");
        else
            System.out.println("No");
    }
}
  
// This code is contributed by prerna saini.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 Program to print 
# all prime factors
from math import sqrt
  
# Returns true if n is
# a square free number, 
# else returns false.
def isSquareFree(n):
      
    if n % 2 == 0:
        n = n / 2
  
    # If 2 again divides n, 
    # then n is not a square
    # free number.
    if n % 2 == 0:
        return False
  
    # n must be odd at this
    # point. So we can skip
    # one element 
    # (Note i = i + 2)
    for i in range(3, int(sqrt(n) + 1)):
          
        # Check if i is a prime
        # factor
        if n % i == 0:
            n = n / i
  
        # If i again divides, then 
        # n is not square free
        if n % i == 0:
            return False
    return True
  
# Driver program
n = 10
  
if isSquareFree(n):
    print ("Yes")
else:
    print ("No")
      
# This code is contributed by Shreyanshi Arun.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program to print 
// all prime factors
using System;
  
class GFG {
      
    // Returns true if n is a square free
    // number, else returns false.
    static bool isSquareFree(int n)
    {
        if (n % 2 == 0)
        n = n / 2;
      
        // If 2 again divides n, then n is 
        // not a square free number.
        if (n % 2 == 0)
        return false;
      
        // n must be odd at this point. So we can 
        // skip one element (Note i = i +2)
        for (int i = 3; i <= Math.Sqrt(n); i = i + 2)
        {
            // Check if i is a prime factor
            if (n % i == 0)
            {
                n = n / i;
          
                // If i again divides, then 
                // n is not square free
                if (n % i == 0)
                    return false;
            }
        }
      
        return true;
    }
      
    // Driver program 
    public static void Main()
    {
        int n = 10;
        if (isSquareFree(n))
        Console.WriteLine("Yes");
        else
            Console.WriteLine("No");
    }
}
  
// This code is contributed by vt_m.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP Program to print 
// all prime factors
  
// Returns true if n is a square free
// number, else returns false.
function isSquareFree($n)
{
    if ($n % 2 == 0)
        $n = $n / 2;
  
    // If 2 again divides n, then n is 
    // not a square free number.
    if ($n % 2 == 0)
        return false;
  
    // n must be odd at this
    // point. So we can skip  
    // one element (Note i = i +2)
    for ($i = 3; $i <= sqrt($n); 
                   $i = $i + 2)
    {
          
        // Check if i is a prime factor
        if ($n % $i == 0)
        {
            $n = $n / $i;
      
            // If i again divides, then 
            // n is not square free
            if ($n % $i == 0)
                return false;
        }
    }
  
    return true;
}
  
// Driver Code
$n = 10;
if (isSquareFree($n))
    echo("Yes");
else
    echo("No");
  
// This code is contributed by Ajit.
?>

chevron_right


Output:

Yes

Time Complexity : O(sqrt(N))
In the worst case when the number is a perfect square, then there will be sqrt(n)/2 iterations .



My Personal Notes arrow_drop_up

Maths is the language of nature

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : jit_t, imdhruvgupta



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.