Skip to content
Related Articles

Related Articles

Improve Article

Esquisse Package in R Programming

  • Last Updated : 22 Sep, 2020

Packages in the R programming are a collection of R functions, compiled code, and sample data. They are stored under a directory called “library” in the R environment. By default, R installs a set of packages during installation. One of the most important packages in R is the Esquisse package. Esquisse package helps to explore and visualize your data interactively. It is a Shiny gadget to create ggplot charts interactively with drag-and-drop to map your variables. One can quickly visualize the data accordingly to their type, export to ‘PNG’ or ‘PowerPoint’, and retrieve the code to reproduce the chart.

Installation

To use a package in R programming one must have to install the package first. This task can be done using the command install.packages(“packagename”).

source("https://install-github.me/dreamRs/esquisse")
install.packages("esquisse")

Installation

To install the development version from GitHub type this:

# or with devtools:
devtools::install_github("dreamRs/esquisse")

Important Verb Functions in Esquisse Package

  • chooseData-Module: It is a module for choosing data.frame from the user environment and select variable to use. It gives the user an option to choose from a given list of available datasets to work on within a shiny app.

Syntax: 



chooseDataUI(id)

chooseDataServer(input, output, session, data = NULL, name = NULL,

                            selectVars = TRUE, launchOnStart = TRUE, defaultData = NULL)

Parameter

Description

idModule’s id.
inputStandard shiny input.
outputStandard shiny output.
sessionStandard shiny session.
data data.frame to use by default.
nameThe name of data.
selectVarsLogical (TRUE/FALSE), display menu to select vars to use in selected data.frame.
launchOnStartLaunch modal when application is launched.
defaultData

 A character vector of data.frames to choose along if there

 is no data.frames in Global environment.

 By default, data.frames from ggplot2 are used.



Example: 

R




# Import shiny and
# esquisse packages
library(shiny)
library(esquisse)
  
ui <- fluidPage(
  tags$h2("Choose data module"),
  fluidRow(
    column(
      width = 4, tags$h4("Default"),
      # Using chooseDataUI       
      chooseDataUI(id = "choose1"),
      verbatimTextOutput(outputId = "res1"))))
  
server <- function(input, output, session) 
{
  res_dat1 <- callModule(
    chooseDataServer, id = "choose1",
    launchOnStart = FALSE)
  output$res1 <- renderPrint({
    str(reactiveValuesToList(res_dat1))})
}
  
shinyApp(ui,server)

Output:

chooseData-ModulechooseData-ModulechooseData-Module

  • dragulaInput: It creates a Drag And Drop Input Widget. One can select different labels(data) from a variety of labels provided by the developer to the app user to twerk with a simple drag and drop layouts.

Syntax: dragulaInput(inputId, sourceLabel, targetsLabels, targetsIds = NULL,

                                  choices = NULL, choiceNames = NULL, choiceValues = NULL,

                                  status = “primary”, replace = FALSE, badge = TRUE, width = NULL,

                                 height = “200px”)

Parameter

Description



inputIdThe input slot that will be used to access the value.
sourceLabelLabel display in the source box.
targetsLabelsLabels for each target element.
targetsIdsIds for retrieving values server-side.
choices

List of values to select from. If this argument is provided, 

then choiceNames and choiceValues must not be provided,

 and vice-versa.

choiceNames

List of names and values, respectively, that are displayed 

to the user in the app and correspond

 to the each choice (for this reason, choiceNames and 

choiceValues must have the same length).

choiceValues

List of names and values, respectively, that are displayed

 to the user in the app and correspond

 to the each choice (for this reason, choiceNames 

and choiceValues must have the same length).

status

If choices are displayed into a Bootstrap label, you 

can use Bootstrap status to color them, or NULL.

replace

When a choice is draged in a target container already 

containing a choice, does the later be replaced by the new one ?#’

badgeDisplays choices inside a Bootstrap badge.
widthWidth of the input.
heightHeight of each boxes, the total input height is this parameter X 2.

Example:

R




# Import shiny and
# esquisse packages
library("shiny")
library("esquisse")
  
ui <- fluidPage(
  tags$h2("dragulaInput demo for geeksforgeeks"),
  tags$br(),
  # using dragulaInput()
  # to create a drag and
  # drop widget
  dragulaInput(
    inputId = "data_di", sourceLabel = "Source",
    targetsLabels = c("Drop Here", "Drop Here 2"),
    choices = names(rock), width = "400px"),
    verbatimTextOutput(outputId = "result"))
  
server <- function(input, output, session) 
{
  output$result <- renderPrint(str(input$data_di))
}
  
shinyApp(ui = ui, server = server)

Output:

dragulaInputdragulaInput

  • esquisser: It is an add-in to easily create plots with ggplot2. ggplot2 is a system for declaratively creating graphics. Just provide the data, tell ggplot2 how to map variables to aesthetics, what graphical primitives to use, and it takes handles rest all on its own.

Syntax: esquisser(data = NULL)



Parameter

Description

dataA data.frame.

Example:

R




# Import shiny and
# esquisse packages
library("shiny")
library("esquisse")
    
esquisser(rock)

Output:

esquisser

  • updateDragulaInput: Update Dragula Input. It updates the drag and drop widgets as soon as the call is passed to the function. For instance, if a label is dragged and dropped from the input, the function updates the set of provided input values in the output.

Syntax: updateDragulaInput(session, inputId, choices = NULL, choiceNames = NULL,

                                              choiceValues = NULL, badge = TRUE, status = “primary”)

Parameter

Description



sessionThe session object passed to function given to shinyServer.
inputIdThe id of the input object.
choice

List of values to select from. If this argument is provided, then choiceNames 

and choiceValues must not be provided, and vice-versa

choiceNames

choiceValues

List of names and values, respectively, that are displayed to the user in the app and correspond

to the each choice (for this reason, choiceNames and choiceValues must have the same length). 

If either of these arguments is provided, then the other must be provided and choices must not be provided.

badgeDisplays choices inside a Bootstrap badge.
statusIf choices are displayed into a Bootstrap badge, you can use Bootstrap status to color them, or NULL.

Example:

R




# Import shiny and
# esquisse packages
library("shiny")
library("esquisse")
  
ui <- fluidPage(
  tags$h2("GfG demo for Update dragulaInput"),
  radioButtons(
    inputId = "update", label = "Dataset",
    choices = c("iris", "rock")),
  tags$br(),
  dragulaInput(
    inputId = "data", sourceLabel = "Variables",
    targetsLabels = c("X", "Y", "fill", "color", "size"),
    choices = names(iris), replace = TRUE,
    width = "400px", status = "success"),
    verbatimTextOutput(outputId = "result"))
  
server <- function(input, output, session) 
{
  output$result <- renderPrint(str(input$data))
  observeEvent(input$update, {
    if (input$update == "iris"
    {
      updateDragulaInput(
        session = session, inputId = "data"
        choices = names(iris), status = "success")
    
    else 
    {
      updateDragulaInput(
        session = session, inputId = "data"
        choices = names(rock))
    }
  }, ignoreInit = TRUE)
    
}
  
shinyApp(ui, server)

Output:



update dragulainputupdate dragulainput

  • ggplot_to_plot: Utility To Export ggplot Objects To PowerPoint. This utility function provides an easy way to save graphs and models layed using ggplot to a .ppt file or simply a PowerPoint presentation.

Syntax: ggplot_to_ppt(gg = NULL)

Parameter

Description

ggcharacter. Name(s) of ggplot object(s), if NULL, launch the Shiny gadget.

Example:

R




# import ggplot2 library
library(ggplot2)
p <- ggplot(iris) + 
     geom_point(aes(Sepal.Length, Sepal.Width))
  
# use ggplot_to_plot
# to display plot 
# in a ppt format
ggplot_to_ppt("p")

Output:

ggplot_to_ppt

The code displays the output in a ppt format. Output to the above piece of code can be seen via this link.




My Personal Notes arrow_drop_up
Recommended Articles
Page :