Given a positive integer N, the task is to divide it into K unique parts such that the sum of these parts is equal to the original number and the gcd of all the parts is maximum. Print the maximum gcd if such a division exists else print -1.
Examples:
Input: N = 6, K = 3
Output: 1
Only possible division with unique
elements are (1, 2, 3) and gcd(1, 2, 3) = 1.
Input: N = 18, K = 3
Output: 3
Naive approach: Find all the possible divisions of N and compute the maximum gcd of them. But this approach will take exponential time and space.
Efficient approach: Let the divisions of N be A1, A2……..AK
Now, it is known that gcd(a, b) = gcd(a, b, a + b) and hence, gcd(A1, A2….AK) = gcd(A1, A2….AK, A1 + A2…. + AK)
But A1 + A2…. + AK = N and hence, the gcd of the divisions will be one of the factors of N.
Let a be the factor of N which can be the possible answer:
Since a is the gcd, all the division will be the multiples of a and hence, for K unique Bi,
a * B1 + a * B2……. + a * BK = N
a * (B1 + B2…….+ BK) = N
Since all the Bi are unique,
B1 + B2…….+ BK ? 1 + 2 + 3 ….. + K
B1 + B2…….+ BK ? K * (K + 1) / 2
Hence, all the factors of N whose complementary factor is greater than or equal to K * (K + 1) / 2 can be one of the possible answers, and we have taken to the maximum of all the possible answers.
Below is the implementation of the above approach:
CPP
#include <bits/stdc++.h>
using namespace std;
int maxGCD( int N, int K)
{
int minSum = (K * (K + 1)) / 2;
if (N < minSum)
return -1;
int i = sqrt (N);
int res = 1;
while (i >= 1) {
if (N % i == 0) {
if (i >= minSum)
res = max(res, N / i);
if (N / i >= minSum)
res = max(res, i);
}
i--;
}
return res;
}
int main()
{
int N = 18, K = 3;
cout << maxGCD(N, K);
return 0;
}
|
Java
import java.io.*;
import java.lang.Math;
class GFG
{
static int maxGCD( int N, int K)
{
int minSum = (K * (K + 1 )) / 2 ;
if (N < minSum)
return - 1 ;
int i = ( int ) Math.sqrt(N);
int res = 1 ;
while (i >= 1 )
{
if (N % i == 0 )
{
if (i >= minSum)
res = Math.max(res, N / i);
if (N / i >= minSum)
res = Math.max(res, i);
}
i--;
}
return res;
}
public static void main (String[] args)
{
int N = 18 , K = 3 ;
System.out.println(maxGCD(N, K));
}
}
|
Python
from math import sqrt,ceil,floor
def maxGCD(N, K):
minSum = (K * (K + 1 )) / 2
if (N < minSum):
return - 1
i = ceil(sqrt(N))
res = 1
while (i > = 1 ):
if (N % i = = 0 ):
if (i > = minSum):
res = max (res, N / i)
if (N / i > = minSum):
res = max (res, i)
i - = 1
return res
N = 18
K = 3
print (maxGCD(N, K))
|
C#
using System;
class GFG
{
static int maxGCD( int N, int K)
{
int minSum = (K * (K + 1)) / 2;
if (N < minSum)
return -1;
int i = ( int ) Math.Sqrt(N);
int res = 1;
while (i >= 1)
{
if (N % i == 0)
{
if (i >= minSum)
res = Math.Max(res, N / i);
if (N / i >= minSum)
res = Math.Max(res, i);
}
i--;
}
return res;
}
public static void Main()
{
int N = 18, K = 3;
Console.WriteLine(maxGCD(N, K));
}
}
|
Javascript
<script>
function maxGCD(N , K) {
var minSum = (K * (K + 1)) / 2;
if (N < minSum)
return -1;
var i = parseInt( Math.sqrt(N));
var res = 1;
while (i >= 1) {
if (N % i == 0) {
if (i >= minSum)
res = Math.max(res, N / i);
if (N / i >= minSum)
res = Math.max(res, i);
}
i--;
}
return res;
}
var N = 18, K = 3;
document.write(maxGCD(N, K));
</script>
|
Time Complexity: O(N1/2)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!