Check if a line at 45 degree can divide the plane into two equal weight parts

Given a set of n points (xi, yi) in 2D coordinate. Each point has some weight wi. The task is to check whether a line at 45 degree can be drawn so that sum of weights of points on each side are equal.

Examples:

Input : x1 = -1, y1 = 1, w1 = 3
x2 = -2, y2 = 1, w2 = 1
x3 = 1, y3 = -1, w3 = 4

Output : Yes


Input : x1 = 1, y1 = 1, w1 = 2
x2 = -1, y2 = 1, w2 = 1
x3 = 1, y3 = -1, w3 = 2

Output : No

First, let’s try to solve above problem for a vertical line i.e if a line x = i can divide the plane into two part such that the sum of weight at each side is equal.
Observe, multiple points with the same x-coordinate can be treated as one point with weight equal to the sum of weights of all points with the same x-coordinate.
Now, traverse through all x-coordinates from the minimum x-coordinate to maximum x-coordinate. So, make an array prefix_sum[], which will store the sum of weights till the point x = i.
So, there can be two options for which the answer can be ‘Yes’:

  • Either prefix_sum[1, 2, …, i-1] = prefix_sum[i+1, …, n]
  • or there exist a point i such that a line passes somewhere in between
    x = i and x = i+1 and prefix_sum[1, …, i] = prefix_sum[i+1, …, n],
    where prefix_sum[i, …, j] is the sum of weight of points from i to j.
int is_possible = false;
for (int i = 1; i < prefix_sum.size(); i++)
  if (prefix_sum[i] == total_sum - prefix_sum[i])
    is_possible = true
  
  if (prefix_sum[i-1] == total_sum - prefix_sum[i])
    is_possible = true

Now, to solve for a line at 45 degrees, we will rotate each point by 45 degrees.
Refer: 2D Transformation or Rotation of objects
So, point at (x, y), after 45 degree rotation will become ((x – y)/sqrt(2), (x + y)/sqrt(2)).
We can ignore the sqrt(2) since it is the scaling factor. Also, we don’t need to care about y-coordinate after rotation because a vertical line cannot distinguish between the point having the same x-coordinate. (x, y1) and (x, y2) will lie to the right, left or on any line of the form x = k.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

#include <bits/stdc++.h>
using namespace std;
  
// Checking if a plane can be divide by a line
// at 45 degrees such that weight sum is equal
void is_partition_possible(int n, int x[],
                            int y[], int w[])
{
    map<int, int> weight_at_x;
    int max_x = -2e3, min_x = 2e3;
  
    // Rotating each point by 45 degrees and 
    // calculating prefix sum.
    // Also, finding maximum and minimum x
    // coordinates
    for (int i = 0; i < n; i++) {
        int new_x = x[i] - y[i];
        max_x = max(max_x, new_x);
        min_x = min(min_x, new_x);
  
        // storing weight sum upto x - y point
        weight_at_x[new_x] += w[i];
    }
  
    vector<int> sum_till;
    sum_till.push_back(0);
  
    // Finding prefix sum
    for (int x = min_x; x <= max_x; x++) {
        sum_till.push_back(sum_till.back() + 
                             weight_at_x[x]);
    }
  
    int total_sum = sum_till.back();
  
    int partition_possible = false;
    for (int i = 1; i < sum_till.size(); i++) {
        if (sum_till[i] == total_sum - sum_till[i])
            partition_possible = true;
  
        // Line passes through i, so it neither
        // falls left nor right.
        if (sum_till[i - 1] == total_sum - sum_till[i])
            partition_possible = true;
    }
  
    printf(partition_possible ? "YES\n" : "NO\n");
}
  
// Driven Program
int main()
{
    int n = 3;
    int x[] = { -1, -2, 1 };
    int y[] = { 1, 1, -1 };
    int w[] = { 3, 1, 4 };
    is_partition_possible(n, x, y, w);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

import java.util.*;
  
// Checking if a plane can be divide by a line 
// at 45 degrees such that weight sum is equal
class GFG 
{
  
static void is_partition_possible(int n, int x[], 
                            int y[], int w[]) 
    Map<Integer, Integer> weight_at_x = new HashMap<Integer, Integer>(); 
    int max_x = (int) -2e3, min_x = (int) 2e3; 
  
    // Rotating each point by 45 degrees and 
    // calculating prefix sum. 
    // Also, finding maximum and minimum x 
    // coordinates 
    for (int i = 0; i < n; i++) 
    
        int new_x = x[i] - y[i]; 
        max_x = Math.max(max_x, new_x); 
        min_x = Math.min(min_x, new_x); 
  
        // storing weight sum upto x - y point 
        if(weight_at_x.containsKey(new_x))
        {
             weight_at_x.put(new_x, weight_at_x.get(new_x) + w[i]);
        }
        else
        {
            weight_at_x.put(new_x,w[i]);
        }
                  
        //weight_at_x[new_x] += w[i]; 
    
  
    Vector<Integer> sum_till = new Vector<>(); 
    sum_till.add(0); 
  
    // Finding prefix sum 
    for (int s = min_x; s <= max_x; s++) 
    
        if(weight_at_x.get(s) == null)
            sum_till.add(sum_till.lastElement());
        else
            sum_till.add(sum_till.lastElement() + 
                            weight_at_x.get(s)); 
    
  
    int total_sum = sum_till.lastElement(); 
  
    int partition_possible = 0
    for (int i = 1; i < sum_till.size(); i++)
    
        if (sum_till.get(i) == total_sum - sum_till.get(i)) 
            partition_possible = 1
  
        // Line passes through i, so it neither 
        // falls left nor right. 
        if (sum_till.get(i-1) == total_sum - sum_till.get(i)) 
            partition_possible = 1
    
  
    System.out.printf(partition_possible == 1 ? "YES\n" : "NO\n"); 
  
    // Driven code
    public static void main(String[] args) 
    {
        int n = 3
        int x[] = { -1, -2, 1 }; 
        int y[] = { 1, 1, -1 }; 
        int w[] = { 3, 1, 4 }; 
        is_partition_possible(n, x, y, w); 
    }
}
  
/* This code contributed by PrinciRaj1992 */

chevron_right


Output

Yes


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : princiraj1992



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.